IELE: A New Virtual Machine for the Blockchain

IELE and K Team
Runtime Verification (RV) is proud to release their first version of IELE, a new virtual machine for the blockchain.

IELE Team Photo, left to right: Daejun Park (PhD student at UIUC, RV intern); Theodoros Kasampalis (PhD student at UIUC, RV intern); Yi Zhang (PhD student at UIUC, RV intern); Traian Serbanuta (RV; screen, left bottom); Grigore Rosu (RV president/CEO and UIUC professor; screen, center, taking the picture); Virgil Serbanuta (RV; screen, right bottom); David Young (RV); Brandon Moore (RV); Yiyi Wang (RV); Dwight Guth (RV).

Continue reading

RV Inc. & FSL @ UIUC Release First Formal Viper Tools

Taming the Viper

Runtime Verification, Inc. (RV) along with the Formal Systems Lab at the University of Illinois (FSL) have announced a joint initiative targeting the full formalization of the Viper smart contract programming language, using the K Framework to create a full formal definition of this research-oriented smart contract programming language. This effort is intended to yield a number of useful tools and artifacts, and to lay the foundation for the future of principled and formally rigorous smart contract development. Today, we are happy to announce the release of our first round of fully formal tools for review to the Ethereum community.

Continue reading

ERC20-K: Formal Executable Specification of ERC20

ERC20
The ERC20 standard is one of the most important standards for the implementation of tokens within Ethereum smart contracts. ERC20 provides basic functionality to transfer tokens and to be approved so they can be spent by another on-chain third party. Unfortunately, ERC20 leaves several corner cases unspecified, which makes it less than ideal to use in the formal verification of token implementations. Indeed, we at RV, Inc., have been asked to verify smart contracts for ERC20 compliance. However, we found that it is unclear what ERC20 compliance means, because the existing presentations of ERC20 are far from serving as mathematical models of the standard token. Consequently, we decided to create ERC20-K, a mathematically rigorous formalization of ERC20, making sure that all corner cases are thought through, explicitly covered, and thoroughly tested. From here on, when we claim that we prove implementations of ERC20 tokens correct, we mean that they provably satisfy the 13 rules of ERC20-K.

Continue reading