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Universal Truth Framework
— Runtime Verification Vision (2023-2025) —

Grigore Rosu — RV & UIUC

This is a long article discussing our company’s overall vision for the next 2-3 years. This
includes our recent Proof Chain proposal, but also other RV products that we plan to develop
and launch. If you are mainly interested in the Proof Chain, then you may want to start with its
litepaper or with the video in which I present it. Then you can come back here for more details
on how the RV infrastructure and products will complement and service the Proof Chain.

Runtime Verification, Inc. (RV)

Runtime Verification, Inc. (RV) is a technology company, with focus on proof generation and
verification. Its core technology, the K framework, enables general purpose, versatile tools and
solutions for secure, scalable and efficient products and infrastructures.

We are likely known as one of the major blockchain security auditing companies,
with emphasis on formal specification and verification of protocols and smart contracts. The first
who formalized the ERC20 token standard, the first who formally verified or even audited
Uniswap. The first who formalized and verified Ethereum's proof of stake protocol and the
Ethereum 2 deposit contract. These among many other examples.

However, if you think of us, RV, as the best security auditors, who use their own formal
verification technology, K, which many say is the best programming language semantics
framework, invented and perfected by ourselves, then ... Well, you would be correct. But you
would not think big enough. We are way more than that. Security auditing and formal
verification are only a fraction of what we are. We are here to revolutionize the very concept of
trust in machines, trust in computers, trust in programs, trust in blockchains. Both in terms of
what trust means, and how to achieve it. This goes way beyond formal verification, as you'll see
in this article presenting our mission and vision.

Who I am

A few words about myself. I am Grigore Rosu, the founder and CEO of RV, also a professor of
computer science at the University of Illinois Urbana-Champaign (UIUC). Previously, I was a
research scientist at NASA Ames, California. My specialty is programming languages, with
emphasis on formal methods, formal verification, and automated reasoning. The K framework
took birth in my Formal Systems Laboratory at UIUC, back in 2003. I coined the term Runtime
Verification back in 2001, together with my NASA colleagues, as the name of a symposium that
is now an annual international conference. Runtime Verification has also become a scientific
field of study in itself, with an increasingly broader scope and community.
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Why Writing This

I am writing this article in early 2023, to remind our existing RV team why we are all here. But
also, importantly, to explain what we do and what we aim at as a company, to our potential new
employees and investors who may have not got a chance to dive deep into our technology and
research. What I present here is the result of more than 20 years of persistent work, which has
been disseminated through peer reviewed publications in top scientific avenues (Google
Scholar, DBLP). You can find all the relevant publications, as well as detailed explanations and
videos on our RV Research, RV Mission and Vision, RV Publications, RV Presentations, and RV
Videos webpages. Here, I keep things high level for brevity.

Terminology, Notations, Abbreviations

This article refers to concepts in both mathematical logic and cryptography. There is,
unfortunately, some degree of terminology overloading and confusion at the intersection
between these two domains, especially surrounding the term “proof”, which plays a central role
in our setting. “Proof” has a clear meaning in mathematical logic, and also a clear but
completely different meaning in cryptography. Similarly, both “proof checker” and “proof system”
are well–established notions in each of the two domains, but with different meanings in each.
Consequently, we need to clarify these terms in order to avoid confusion. For the sake of clarity,
in this section I establish the terminology, notations and abbreviations that I will strive to
consistently use throughout the article.

Mathematical (or Matching Logic) Proof = proof in the usual mathematical sense in some
logical formalism of choice – in this article, that logical formalism is Matching Logic. A proof is
a sequence of steps that are either Axioms in a Theory, or deduction / inference steps (e.g.,
modus ponens) using Rules of Inference, or Proof Rules, that are part of a Proof System,
ending with a statement which is hereby proved. Such statements which are proved this way
are called Theorems. When the proof of a theorem is formalized as a certificate of correctness
of that theorem that can be passed to other parties or to programs, we call it a Proof Object.
Computer programs which help us search for proofs of theorems are called Provers, or
Theorem Provers, and those which check proof objects for correctness are called Verifiers, or
Checkers, or Proof Checkers. Proof objects tend to be very large in practice, because they
contain all the proof details, so that the proof checkers can stay very simple, to be trusted.

Claim = a statement that is mathematically provable, that is, a theorem. We chose to call it
“claim” instead of “theorem” to make this paper more accessible to non-experts. Indeed, most
readers may not immediately realize that everything that is computable, that is, everything that a
computer or a machine does when following some prescribed rules (a program) is in fact a
theorem, in the theory defining the execution environment (programming language, virtual
machine, machine language, etc), and that the actual computation or execution itself is in fact a
proof of the theorem. However, even experts may still think more naturally of “foo(17) returns
42” as a “claim” instead of a “theorem”.

Matching Logic = logical formalism of choice in this project, a second-order logic fragment
including first-order logic and a least-fixed point construct denoted 𝝁 (useful for for iteration,
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recursion, induction, etc.), which was created to be minimal but expressive enough to capture
both program execution and formal verification as theorem proofs.

Zero Knowledge Proof = proof of knowledge, which is usually under the form of a succinct
cryptographic artifact, here called a ZK Certificate, attesting knowledge that some statement is
true. We try to avoid the ZK dedicated terminology of “ZK Proof”, and use instead ZK
Certificate, to avoid terminology confusion with mathematical proofs. In this cryptographic
context of zero knowledge, a Proof System is a protocol between a Prover and a Verifier,
where the prover’s goal is to convince the verifier that a statement is true. We will prepend all
these cryptographic concepts with ZK or, sometimes, Cryptographic, to avoid confusion with
the homonymous mathematical concepts, i.e, ZK Proof / Certificate, Cryptographic Proof /
Certificate, ZK Proof System, ZK Prover, and ZK Verifier. If we don’t use Cryptographic or
ZK with any of these, then we mean the version coming from mathematical logic.

Zero Knowledge Technology = generic umbrella for techniques, methods, algorithms,
protocols, circuits, etc., that were developed in the context of zero knowledge research. These
include SNARKS, STARKs, zkSNARKs, zkSTARKs, etc., recursive or not. We take the freedom
to informally say that a program was ZK-ed, or SNARK-ed, etc., when it was modified into a
circuit capable of producing ZK certificates.

ZK(-based) Proof Checker = ZK-ed Matching Logic Proof Checker. In our project, we need
only one program to be ZK-ed, namely the (Matching Logic) Proof Checker. Thus, we take the
liberty to call it the Proof Checker when we are in the mathematical, logical setting, and the ZK
Proof Checker when we talk about its ZK-ed variant, that is, its implementation as a ZK circuit.
The ZK Proof Checker consists of two components: the ZK Certificate Generator, which is the
component that produces the ZK Certificate that a given proof object has been checked by the
Proof Checker, and the ZK Certificate Checker, which checks the ZK Certificate produced by
the ZK certificate generator. We deliberately avoid the dedicated terminology in the ZK domain,
to avoid confusion. For example, we say ZK Certificate Generator instead of ZK Prover, etc.

Proof of Proof = ZK proof of mathematical proof. We sometimes use this terminology to
succinctly convey the essence of our approach: the ZK proof checker produces a ZK
proof/certificate of knowledge that a mathematical proof for the claim has been checked.

We try to not use mathematical notation and greek letters in this article, but sometimes they are
unavoidable. When that happens, we use 𝜞 to range over theories, 𝝋 and 𝝍 to range over
claims or theorems, 𝜫 to range over mathematical proofs, and 𝝅 to range over ZK certificates.
These may have intuitive subscripts or superscripts.

UTF = Universal Truth Framework
ZK = Zero Knowledge
SNARK = Succinct Non-Interactive Argument of Knowledge
STARK = Scalable Transparent Argument of Knowledge
DSL = Domain Specific Language
PL = Programming Language
VM = Virtual Machine
EVM = Ethereum Virtual Machine
FOL = First-Order Logic
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RV = Runtime Verification
AI = Artificial Intelligence
GPT = Generative Pre-trained Transformer. Instances include ChatGPT, GPT-4, etc.
K = K Framework
MEV = Maximum (or Miner) Extracting Value
CFG = Control Flow Graph
SMT = Satisfiability Modulo Theories

Universal Truth Framework — What?

Let me start with what we mean by the Universal Truth Framework (UTF), what it is. Well, it is a
framework in which every claim that is made, by this framework, is verifiably true. Specifically,
claims come with independent, succinct, third party checkable proof certificates. A claim in UTF
is anything that is computable or provable. In particular the execution of a program, some work
that has been done or an action that has been performed, the formal correctness or security of
some code, or any mathematical theorem. And indeed, in our framework that we present here,
all the above can be formalized as mathematical theorems. Let's take a look at this picture:

Any true claim 𝝋 will have a succinct (cryptographic) proof 𝝅𝝋. Anybody can check the proof 𝝅𝝋

mechanically and efficiently, practically instantaneously, and thus they will know that 𝝋 is true.
UTF will facilitate producers of claims to also produce proofs for their claims, and consumers of
claims to assess the validity of said claims by checking the proofs that come with those claims.

Universal Truth Framework — Why?

Recent advances in formal proof generation and verification have led to fragmentation, to a
point where instances of essentially the same main idea appear and are viewed as different
challenges, using different instruments to solve. We propose the UTF as a unifying framework,
purposely very general in scope, yet achievable, encompassing everything that can be
expressed as a mathematical statement that admits a proof in a mathematical theory. This
includes the entire field of computing, as well as that of formal methods, semantics and
verification. The UTF thus captures several major existing approaches, but will have many
applications beyond those. For example:

● Verifiable Computing would now work for all programming languages. Basically, you
execute your code securely in untrusted environments, say in the cloud, get back a proof
certificate, verify it. Now you know your computation was correct.

https://en.wikipedia.org/wiki/Verifiable_computing


● Zero Knowledge capability available for all languages, correct by construction! You can
have, for example, zkEVM, or Cairo, or zkVM of RiskZero, or zkLLVM of the Nil
Foundation, etc. All of these simply because semantically correct program execution is
a claim in the UTF, in the corresponding language theory.

● Formal verification claims, correctness claims, security audits, as well as other program
analysis claims, become checkable certificates (vs. PDF reports). So you don't have to
trust the developers of the smart contracts, or the auditors of those smart contracts, or
anybody else! You simply check the claim certificate.

● Critical procedures or devices in hospitals, aviation, automotive, robotics, etc., yield
checkable certificates for their correct application. This will increase our confidence in
complex systems, in complex processes, in machines, even in AI, because we don’t
have to trust them, we check their claim certificates.

Universal Truth Framework — How?

Our proposal for the UTF is to combine proof generators, like K, with ZK technology:

You start with the claim 𝝋 and you pass it, generically speaking, to the K framework. Think of
the K framework as a searcher in a huge space of possibilities for a mathematical proof of your
claim. Your claim can be that this program execution is correct, or that this protocol is correct, or
anything that can be formally stated. Then K, with its suite of tools, will search for a
mathematical proof for your claim. K can use many other tools as helpers. For example, K has
backends for Coq, for Lean, for Dedukti. All these help you to search for a mathematical proof
for your claim 𝝋. You can even use AI, like chatGPT, to find helping lemmas and invariants.
You can truly think of K as a mighty searcher of a mathematically rigorous proof 𝜫𝝋 of your
claim 𝝋. We may, interchangeably, call the mathematically rigorous proofs 𝜫𝝋 proof objects.

The problem with mathematically rigorous proofs, or proof objects, is that they can be very long.
When we go down all the way to the axioms of mathematics and the basic logic reasoning,
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mathematical proofs can be huge. Nevertheless, they are the ultimate correctness certificates
for claims. Unfortunately, their size is a major problem for us, both in terms of space and
checking time, because we want to ship them with the claims they certify and the consumers of
the said claims to check them.

Can we reduce the size of proofs significantly, maybe even to a constant size, in a way that
makes their checking, or verification, very fast, maybe even constant?

Yes, we can. With a trick that requires two steps.

First, instead of shipping the huge mathematical proof, 𝜫𝝋, check it locally, with a proof checker!
The advantage of having a very detailed mathematical proof is that you can rigorously check it
with a very small and simple proof checker. The proof checker will check every single step in
the large mathematical proof. Moreover, proof generation and proof checking can be piped, so
the proof is checked as it is being generated, and make use of massively parallel architectures,
because proof checking is embarrassingly parallel: the entire proof is correct if and only if each
step is correct, a perfect application for map-reduce architectures. We implemented a naive
proof checker for the logic underlying the K framework, Matching Logic, which makes no use of
piping or parallelism, but which was surprisingly small: 200 lines of code! I'll get back to this
later, but for now just think about its impact and consequences: with only 200 lines of code, we
can check any claim … made by any program … in any programming language!

Second, implement this proof checker as a zero knowledge (ZK) circuit! That is, make it
produce a cryptographic certificate, or a cryptographic proof, 𝝅𝝋, that a mathematical proof (𝜫𝝋)
for the public claim 𝝋 has been presented to it and checked and passed.

Therefore, our proposal as a first solution to implement the UTF is to use K and its arsenal of
tools and backends (including Coq and Lean) to produce a matching logic proof (𝜫𝝋), followed
by a (small) ZK-ed proof checker to yield a succinct ZK proof (𝝅𝝋). We call it Proof of Proof: ZK
proof of mathematical proof. Importantly, note that now you don't have to trust K or any tool that
can generate mathematical proofs! You only have to trust the proof checker, which is public,
small and the same for all languages and claims (execution, formal verification, etc.).

Of course, users also have to trust that their claim 𝝋 is indeed what they mean. This goes
beyond our goal with the UTF, but we are well aware of this unavoidable challenge, which
touches upon the philosophical nature of rigor and truth; we refer the reader interested in
philosophical arguments on this topic to this beautiful Pollak paper. Our pragmatic view is that
the intended meaning of the claim is the responsibility and liability of its owner and stays outside
of the UTF. In practice, claims will be generated automatically by tools which are validated by
intensive usage in various applications.

Application of UTF — Proof Chain

The applications of the UTF that I mentioned previously are natural, not surprising, once we
assimilate how Proof of Proof works. Indeed, it will be pretty clear that we can have verifiable
computing, as well as ZK variants for all programming languages for which we have formal
semantics. It will also be pretty clear that we can generate, from formal security audits, ZK
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correctness proof certificates. But we would like to propose an application that goes beyond the
state-of-the-art in blockchain. Way beyond.

Let me first highlight some of the limitations of the current blockchains:

● Duplication of computation. Indeed, all the validator nodes re-execute the same code,
the same smart contracts (programs). That’s a waste!

● Hardwired VMs. Indeed, validator nodes come equipped with predefined virtual machine
languages, like EVM, Cairo, Move VM, etc., for all programs. Why!?

● Extrinsic correctness. Indeed, the security or correctness or formal verification
arguments, why a certain program on the blockchain is correct, are external activities,
done off-chain via uncheckable documentation (PDF files). Why!?

The UTF will enable a new generation of blockchain, which we call the Proof Chain, that will
allow arbitrary claims, like execution, or correctness, or literally any truth, to be made, checked
and stored. We will be able to write smart contracts in any programming or specification
language for which we have a formal semantics. We will be able to execute any
code/transaction once and for all, locally, and then broadcast its proof of proof (ZK) certificate to
the validators. Every single claim made this way will be backed by a mathematical proof which
will be made succinct, as a cryptographic proof.

The Proof Chain will require no virtual machines to be run by validators. The VMs and all the
program execution infrastructure will be off-chain, with the purpose to produce ZK certificates.
The blockchain validators only check the ZK certificate and reach consensus, but will not
re-execute the programs. VMs are complex and can have implementation bugs, especially
when they incorporate ZK technology. Why take that risk!? Moreover, VMs complicate the
blockchain network and infrastructure. Validator nodes with incorporated VMs need resources
to re-execute all the transactions and require regular upgrades.

The mathematical proofs of the Proof Chain claims will be produced off-chain using a variety of
available methods, ranging from tools like K, instrumented execution engines, theorem provers,
proof assistants, or even manually or using advanced AI. We will not have to trust these
methods, because they are ultimately just best effort searchers for mathematical proofs of
claims. The mathematical proofs will be checked by trusted proof checkers, which will yield
succinct cryptographic/ZK proofs for the Proof Chain.

If this future vibes with you, let us continue our journey by diving into specifics. The next few
sections discuss the K framework, which was the inspiration for the UTF and the Proof Chain,
as well as recent K-powered tools and envisioned products. If you are already familiar with K
and its tools, or want to first see how the UTF puts together K, Matching Logic and ZK, you can
skip to the Matching Logic section. If you have a good feel for how the UTF works and are
rather interested in seeing how it can be used to power the ultimate Layer Zero blockchain, fast
forward to the Proof Chain section.



What is K?

Let me set the scene first. We tell computers what to do using programming languages. There
are many languages already and many of them are invented as we speak. Especially in new
domains that propose novel means of computation, like the blockchain. Unless it is very new,
each language usually comes with a suite of tools.

Interpreters and compilers are the most basic tools, because they allow us to execute programs,
to implement virtual machines, and to test programs before deployment. For example, the
factorial(3), in Java, evaluates to 6. In applications where program correctness is paramount,
like in mission or safety or security critical systems, conventional testing is not sufficient. We
need deeper program analyses.

Broadly speaking, model checkers systematically analyze the space of behaviors of a program,
up to specified boundaries or abstractions. They allow us to find corner cases, which can be
bugs, or optimal solutions to specified constraints. For example, the maximum extracting value
(MEV) of a set of transactions is some value M.

Formal verification tools give us the highest level of assurance, because they cover all the
behaviors of a given program. You can think of them as exhaustive testing tools. To cover
potentially very large or even infinite spaces of program behaviors or states, formal verifiers may
make use of symbolic execution and logical deductive reasoning, to mathematically prove that
programs satisfy their requirements. For example, to prove that the smart contract at some
Ethereum address is a correct implementation of the ERC20 token specification.

Basically, each arrow in this picture

represents a certain tool, a whole system, for a certain language, which usually is complex,
sometimes taking many years of work. For example, geth is an interpreter for EVM – the arrow
from Ethereum VM to Interpreter. GCC is a compiler for C. Java Pathfinder is a model checker
for Java. Certora is a deductive verifier for EVM. And so on and so forth. Some tools aim at
implementing two or more of the above capabilities. In short, we have lots of languages and
lots of tools for them, which are used in critical infrastructure, applications and products.



The current state of affairs comes with major pain points. Both for developers (left red
surrounded area in the picture below) and for users (right red area). That is, for all of us:

For developers, duplication of code and work is always a pain. Indeed, different tools for the
same language require a parser, or a control flow graph (CFG) extractor, and each of these
implements their own, usually by copying and adapting an existing code base. Worse, the same
conceptual tool for two different languages, for example model checkers for C and for Java, are
perceived and implemented as two completely different tools, most likely by two different teams
of talented engineers or researchers, although they implement the same well understood
algorithm or technique, just adapted to a different language. This is a waste of time, talent and
effort. And let's not forget that programming languages evolve as well, from version 1 to version
2 to version 17, right?; C11, C17 ... More often than not, these tools are versions behind.

While developers’ pain may seem serious enough, in fact it pales in comparison with its
consequences for the rest of us, the users of these tools. For example, why should we trust that
a program executed correctly; for example, that the factorial(3) correctly evaluated to 6, in some
given implementation of Java, or C, or Solidity? After all, there are hundreds of thousands of
lines of code implementing the compilers and interpreters of these languages. The situation is
even worse for tools meant to ensure correctness, such as model checkers or deductive
verifiers. Why should we trust a tool claiming that the contract at address .0x2e…f5 correctly
implements the ERC20 token specification?

All the tools for all the languages, in the end, make claims that we are forced to accept. Claims
of execution, claims of optimality, claims of correctness. We take risks on a daily basis by
trusting all these claims. Risks that sometimes result in loss of money, or of expensive
machinery, or even of human life (Wormhole, Ariane-V88, Therac-25).

Is there any alternative, though? Would it be possible to have a universal framework, where any
claim made by any tool, or any programming language, can be independently checked with a
unique, universal claim checker, ideally one which is so simple that it can be implemented in a
matter of hours, if one does not want to trust existing implementations? Yes, it is. The
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K Framework. We proposed it 20 years ago and perfected it ever since. We are now on a
mission to take it to the next level. To disrupt the state of the art and to change the way we think
about Computing and Trust.

This is how K addresses the two pain points, of developers and of users:

On the developers’ side, K allows and provides a programming language for languages – a
domain specific language to implement programming languages, or to define programming
languages. We call these programming language definitions, the formal semantics of the
respective languages. The various tools that the K framework provides, like interpreters, model
checkers, symbolic execution engines, deductive verifiers, etc., are implemented in a generic,
language agnostic way. In other words, you define a PL, plug it into the K framework, and then
pick a tool, say symbolic execution, and you’ve got a symbolic execution engine for your PL.

This separation of concerns has major implications in terms of increasing network effect,
because you implement a language once and for all, or define a language once and for all, and
then you get all the tools for that language. You improve the language, say go from Java 1.4 to
Java 5, and now you’ve got all the tools already upgraded automatically for your new version of
the language. And also, similarly, you are very motivated now to fix bugs or add optimizations,
improvements to the tools that are language- parametric. For example, if you make the
symbolic execution engine faster in K, then you get a faster symbolic execution engine for all
languages. But importantly, you don't have to maintain L ✕ T different systems, where L is the
number of languages and T is the number of tools. Instead, you only have to maintain the
languages themselves plus the tools themselves: so L + T instead of L ✕ T. This reduces the
complexity enormously and makes tool development more convenient.

For users, on the other hand, everything that the K tools do when instantiated with a
programming language, basically any claim that any K tool makes, is a theorem. A theorem
which is valid in a mathematical theory, namely the formal semantics of the instance
programming language. The K tools have the capability to search for and produce a
mathematical proof for the claim. I want to re-emphasize that computation is a particular case of
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proof in K: when you execute a program with the interpreter tool of K, you get a mathematical
proof which, starting from the axioms that constitute the formal semantics of the programming
language, demonstrates step by step that your program executes to the claimed result. For
example, that factorial(3) executes to 6.

We have a small proof checker, of only 200 lines of code, which can check any of the proofs
done by any of these K tools, or any other tool that can produce mathematical proofs. Although
K was invented 20 years ago and the first ideas underlying it derived from work on similar topics
done when I was a NASA research scientist (2000-2001), the proof checker was implemented,
evaluated and published in its current minimal form only relatively recently, in CAV’21 and
OOPSLA’23. The reason for this late development is that the underlying logical foundation of
the proof checker, matching logic, which we proposed in 2008 during a sabbatical at Microsoft
Research, required more than 10 years of work and it was finalized only in 2019, with the
addition of support for the 𝝁 construct for least-fixed points (LICS’19). More about this shortly.

How Large is K? Is It Bug-Free?

Considering how much it does, it is not surprising that the K framework is rather large and
complex. It has more than 500,000 lines of code in four different languages. K has always
been open source (Github, MIT license). It is likely the most complex formal methods system.
To give you a glimpse at its complexity, the diagram below shows the architecture of its tools
and their dependencies that we use in our internal development:

Large systems have bugs. Even formally verified systems often have bugs, especially when it is
hard or impossible to specify what they should do, like it is the case for K – that would require a
formal semantics of K, either in K itself or in some other formal system which requires a formal
semantics itself, leading to circular dependencies. Not to mention indirect bugs due to bugs in
compilers, libraries, or the underlying OS.

It is therefore not surprising that we and other users of K keep discovering bugs in its tools.
Although we fix them promptly, it is more probable than not that K still has and will continue to
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have bugs. Fortunately, this is no more than an inconvenience, one which cannot lead to
invalidating any final claim made with any of its tools. Indeed, thanks to K’s capability to
generate proof objects, which can be independently (of K) checked with a small and trusted
proof checker, we don’t need to trust any of K’s tools. This approach is called Translation
Validation in the literature: do not validate the translator itself, but each translation instance done
with the translator, separately.

Therefore, our philosophy is that you don't need to trust complexity, you simply check it.

To summarize the discussion so far, the K framework allows you to rigorously define a PL
through its formal semantics, once and for all, and then “plug” it in the framework and “play” it,
meaning that you can derive all the tools that you need for your PL from its formal semantics.
These tools are capable of producing mathematical proofs of everything they do, and everything
they do can be stated as a mathematical theorem. At least that was and continues to be the
founding principle of K. In reality, the instrumentation of the tools to produce proof objects is a
relatively new development, started two years ago. Not all the tools have been instrumented to
work with all the languages yet. There's still engineering work needed, which is in progress.
But we will get there. And when we get there, everything K does will result in a proof object that
can be checked by a proof checker, which I'm going to talk about later.

Next I'm going to talk a bit about what's new in K, what happened in the last 18 months or so
after our first raise. There are many new recent developments in K, which I cannot mention
here. I'm only going to focus on a few of them.

New: K Summarizer

One of the most important recent K infrastructure developments is the K Summarizer. It
basically generates a control flow graph (CFG) of all the behaviors of a given program. That's
very similar to what a compiler does, except that it is completely driven by the PL semantics!
And completely automatically! And correct by construction!

Let me illustrate the K summarizer with an example. Let's consider the semantics of EVM in K,
KEVM (see also https://jellopaper.org/, a human readable EVM semantics generated
automatically from the KEVM semantics), and the following code fragment in Solidity, namely a
smart contract that calculates the sum of numbers from 1 to n.

https://link.springer.com/chapter/10.1007/BFb0054170
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This code is only for illustrative purposes, it is not meant to be a practical smart contract. The
program takes an input n, then assigns the sum s, which is the return value of the contract as
well, to 1 and then goes through a loop and adds all the numbers in some optimal way, in the
sense that it only adds the numbers larger than or equal to 2, because it starts with s equals 1.
Well, as a matter of fact, this program has a small, intended bug: it must be called with n larger
than or equal to 1 in order to output the correct sum: if n equals 0, the program returns 1 instead
of 0, which is incorrect. But for any n larger than or equal to 1, the function sum works correctly.

The K Summarizer takes a programming language semantics
as input, here the EVM semantics, and a program in said
language, here the sum program above, which we compiled
first to get its EVM code. From these two inputs, the
programming language semantics and the program, the K
Summarizer generates a graph like this one to the right. This
graph looks very much like the program, in the sense that there
is some code that initializes things, the s equals 1 and i equals
n before the loop, then the loop takes place, and then there is
the exit from the program.

What's different here from what conventional compilers do, is
that every edge in this control flow graph (CFG) is actually a
theorem, a reachability claim saying that if you are in a state
that matches the source pattern of the arrow then, if the
conditions on the arrow hold, you reach a state that matches
the target pattern of the arrow. Note that sometimes there are
multiple arrows from a node, so there are conditions splitting
the potential behaviors. In other words, this K tool summarizes
all the behaviors of the program automatically, driven by the
programming language semantics and the program only.

The K Summarizer is now at the core of several other K tools, like efficient interpreters,
compilers, program verifiers, model checkers, and symbolic execution engines. Once you
summarize the program, you can use the resulting summary in these tools instead of the
program itself, to achieve the analyses more efficiently. Intuitively, the summarizer computes
the accumulated semantics of all the instructions in each of the basic blocks of the program.
That is, each basic block is semantically summarized into an arrow in the resulting CFG
summary. You can think of these arrows like “big steps”, each comprising all the small steps of
the block. Because it is correct by construction according to the language semantics, we can
actually associate a mathematical proof to each arrow. This will allow us to generate proof
objects, eventually, from everything that our tools do, which is necessary to implement our UTF.

Importantly, the CFG produced by the K Summarizer is a K definition itself, where each arrow in
the CFG is a rewrite rule. A good way to think of it is as the formal semantics of the
summarized program. Or as a domain-specific language (DSL), defined in K, which is very
specific to the summarized program; so specific, that it only knows about that one program and
some necessary fragments of it (its basic blocks). Another way to look at it, is as a way to
optimally inline the PL semantics within the program itself, until there is nothing left from the PL



except what matters for the one program that is summarized. This is similar to what compilers
do, but what is different here is that this process is entirely driven by formal semantics of
languages and mathematical proofs.

Since the output of the K Summarizer is an ordinary K definition, we can use it as input to any of
the tools offered by the K framework. In particular, as input to the LLVM backend of K, which is
normally used to generate interpreters from language semantics. When we do that, we get an
interpreter specialized for one program — this is, again, similar to what compilers do: for
example, a C program is compiled to machine code, which is then interpreted by the processor.
This effectively gives us an EVM compiler, automatically derived from the formal semantics of
EVM, correct by construction!

The above raises the following question: how much faster are the EVM programs compiled
using the K Summarizer? Our experiments so far show a performance boost close to 100x
compared to interpreted EVM, which is not surprising: usual performance rates between
compiled and interpreted code is between 10x (Java) and 1000x (LLVM). This means that we
can use our K Summarizer to execute EVM smart contracts two orders of magnitude faster than
Ethereum nodes. This further means that an MEV engine can spend 100x more time searching
for optimal transaction orderings than its competitors. As explained in our monitoring & recovery
section, we plan to incorporate our EVM compiler obtained using the K Summarizer in our
Ethereum Keeper products.

The K Summarizer was not available six months ago. In our view, it is a game changer. Not
only in the overall design and implementation of the K framework, but also in the scientific
community. Generating compilers correct by construction from language semantics is the Holy
Grail of the programming language and semantics field. For the academically inclined reader,
broadly speaking this work falls under the area called partial evaluation, and more specifically
under the subarea of “partial evaluation of interpreters”, aka Futurama Projections. There, the
idea is that we can regard an interpreter as a function taking a program as first input and an
input to the program as second input; then through partial evaluation of that interpreter function
in its first argument, the program, you get another function, which now behaves as the compiled
program: it takes the input of the program as input and produces a result. However, little to no
progress has been made in more than 50 years of research. Not until now. Not until the K
Summarizer. Why? We believe that’s because the community looked at the problem from the
functional programming angle instead of from the language semantics angle, that is, as
specializing a function instead of a semantics. The semantics is more general, because the
interpreter can be generated from it, as we do with K. Sometimes solving the more general
problem is easier and gives more clarity.

Just to be clear, I'm not saying that we have completely solved the semantics-based compilation
problem, for all languages. But we have made significant progress, that it works for some
languages, like EVM, and that we are not far from a general solution.

New: KEVM-Foundry

Another important new development is the integration of KEVM with Foundry, called
KEVM-Foundry in this document (we are considering a dedicated, better name), essentially
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giving Foundry access to the EVM semantics in K by means of cheat codes.

Foundry is an increasingly popular parametric property testing framework for Solidity. It is like
jUnit (for Java), but for Solidity. Parametric property testing frameworks usually ask the user to
provide some setup code that initializes the state, together with a set of (property) tests that
exercise various program behaviors against that state. Let us illustrate how Foundry works
using our example sum contract from the previous section:

The setup() function here only creates an instance of the sum contract, the contract under test
(cut). The names of the property tests are currently required to start with “test”. We have only
one property here, that checks the closed form solution of the sum. Specifically, it takes a
symbolic input N, then assumes N is larger than or equal to zero (intended mistake, for
demonstration only — recall that sum(n) works correctly only when n is larger than or equal to
1), then makes a call with input N to the sum function under test, then it asserts that the function
call returns the correct closed form solution.

Note how Foundry extended the language with new instructions, like vm.assume(...). These
so-called “cheat codes” are implemented as hooks into the VM and allow tools like those of
Foundry to interact with the state of the VM, in particular to customize it or extend it according to
the specific tool needs. The default Foundry tool, “forge”, fuzzies the property parameters in
order to obtain a potentially very large set of concrete unit tests, in the hope that some of them
may expose corner case bugs. Specifically, it generates lots of concrete random inputs for the
property parameters that satisfy the assumptions, then executes the code with those concrete
inputs; in particular, all the assert commands must hold in order for the test to pass. Each
concrete test is executed in the same initial state generated by the setup function; that is, the
states obtained after executing each test instance are irrelevant and thus discarded.

Foundry’s fuzzer is fast, but it only covers a finite input set. In our example, remember that our
code was incorrect when the input n of sum equals 0. So you may expect Foundry to find a
counter-example with this property test when N is 0. Unfortunately, the fuzzer cannot find this
issue (as of March 2023), generating and trying concrete inputs N, different from 0, for as long
as we let it run. The input space is infinite and it just happens that the fuzzer doesn't guess the
case when the input N equals 0; this may change in the future, with improved versions of the
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fuzzer. Nevertheless, if we bound the input to a certain range, say if we also assume N smaller
than 10, then Foundry will exhaustively explore the finite input space and it will find the issue.

Foundry is a tool that Solidity developers use regularly these days. Many of our RV clients are
already familiar with Foundry. If not, we teach them, because we believe Foundry is currently
the best testing framework for Solidity code.

Our KEVM-Foundry tool incorporates KEVM semantics within Foundry. KEVM-Foundry takes
the same tool input as Foundry, so the same property specifications and the same assumptions
and the same assertions, but instead of fuzzy testing, it does symbolic execution. So instead of
instantiating the property test parameters with random concrete values, it leaves them symbolic
and executes the code using the KEVM semantics under the hood. This way, the parametric
tests become formal specifications and the KEVM-Foundry tool formally verifies them. For the
example above, the KEVM-Foundry tool reports an error, as expected, because the property
does not hold for N=0. Currently, KEVM-Foundry requires manual intervention to guide the
proofs, but the user is rewarded with an error found. We plan to translate these detected errors
into concrete test inputs, and thus to have KEVM-Foundry generate test inputs, same like
Foundry’s forge command, but only inputs that break the property tests! When no such input
can be generated anymore, to generate a proof object that attests that the property tests are
correct, when regarded as specifications.

In other words, KEVM-Foundry is a formal verification tool for EVM. This is an elegant way to
expose the power of the K framework to developers, without requiring them to learn K. Actually,
the learning curve of KEVM-Foundry is effectively zero, once you already know Foundry. It is
the same familiar user interface that Foundry offers and K is completely hidden under the hood.

I would like to make a theoretical argument here, namely that parametric property tests are quite
expressive in terms of program specification and verification. Beginners to formal verification, or
formal verification reductionists, may think or claim that formal verification is more powerful than
parametric property testing, because with formal verification we can prove properties, while with
parametric property testing we can only test properties. Well, it turns out that Hoare triples,
which are the core of formal verification, actually can be faithfully expressed as parametric
properties. I would like to explain this aspect well, because I think understanding this is
important to understanding why the integration of K with tools like Foundry is so important.

In program verification, Hoare triples, or correctness triples, are of the form "{pre} code {post}"
and these three entities – preconditions, code and postconditions – share some free variables.
Since the free variables are important in our narrative here, we write Hoare triples as in the
picture below, where “vars” are the free variables that occur in the precondition, the code, and
the postcondition:

In our previous property of the sum of natural numbers, e.g., the correct Hoare triple should
have the precondition N > 0 – remember for n equals 0 the code is incorrect –



Notice that the same N is used in the precondition, in the code, and also in the postcondition.
We say that N is a free variable, or a parameter, of the Hoare triple.

Hoare triples can be expressed as parametric property tests as follows, where the free variables
in the Hoare triple become parameters in the corresponding property:

Therefore, we assume the precondition, execute the code, assert the post condition. In our sum
of natural numbers example, our Hoare triple becomes the following Foundry parametric
property test (written this time correctly, with assumption N > 0):

Now KEVM-Foundry is able to formally verify this property, currently with a bit of manual help
from the user (which we hope to soon eliminate, via automated invariant inference). Of course,
Foundry’s fuzzer runs for as long as we are willing to wait without finding any violations,
because the property is valid, which is the same behavior shown by Foundry as with the
previous property test, with N >= 0, which was incorrect.

Therefore, parametric properties are expressive. They are theoretically equivalent to Hoare
triples, so verifying parametric properties is equally powerful to conventional formal verification.
Both approaches are language-specific, that is, unlike K, both Hoare logic and parametric
properties are constructed for a specific language. In practice, however, language-specific
formalisms are limited by design. For example, support for loop invariants, contract invariants,
collection invariants (eg, the sum of all values in an ERC20 token map is the total supply),
temporal logic constructs, etc., will have to be added to Foundry via cheat codes or other ways,
if we want to naturally write certain properties that require them. This is unavoidable and,
indeed, it has happened in the world of language-specific formal verification since the beginning.

An important advantage that a language framework like K (Coq, Lean, etc.,) gives us is that it
allows us to express complex properties that are harder or impossible to express using
conventional Hoare logic or symbolic property testing. For example, we may want to require the
precondition that the function sum can only be called when the stack size is smaller than 1000,
and/or that it uses no more than 3 locations in the storage, or to also specify a closed form
expression for its gas consumption. Fortunately, we have the full expressiveness of K to our
disposal: at any given moment we can write the harder properties directly in K. The details of



how this is done is beyond our scope here, but the reader can contact us for details.

In conclusion, we found Foundry’s parametric properties sufficiently expressive for our formal
specification and verification needs, and KEVM-Foundry to be a practical and user-friendly
frontend to the KEVM semantics, which hides the complexity, but also the power, of full K. We
are in the process of developing similar property testing and formal verification tools for other
languages, following the same pattern: define a new or use an existing K formal semantics of
the target language, then build a new or adjust an existing parametric property testing
framework to become a formal program verifier for the target PL based on semantics-driven
symbolic execution. This will allow us to bring the success and practicality of Foundry and
KEVM-Foundry to other blockchains. Current targeted efforts include Elrond and Algorand.

New: The ERCX Tool/Product

Another new development is the ERCx tool/product. This is an ERC compliance checker for
token implementations, offered to the developers and users at large through an easy to use,
automatic frontend web interface. All you have to do to use ERCx is to provide the Ethereum
address of your token code:

ERCx is implemented as an instance of KEVM-Foundry with pre-defined sets of property tests,
each corresponding to a specific ERC token or variant of it. Indeed, each ERC token standard,
for example ERC20, is proposed by its authors to the community as an API specification, whose
intended meaning is usually described informally, in words. We formalized the well-known but
informal specification of ERC20 as a collection of parametric property tests, which as explained
previously, in the presence of KEVM-Foundry, becomes a formal specification. We formalized
not only the main ERC20 standard, but also its variants that are tacitly assumed “ERC20
tokens” by the community. For example, the ERC20 standard has no whitelists, no blacklists,
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no transfer fees, etc., yet many variants have these. ERCx understands all these variants and
tells you exactly in which category your token falls. We ran ERCx against all the ERC20 tokens
on Ethereum (more than 200,000 of them) and it classified them in more than 20 categories.
Specifications for other ERC token standards are currently being formalized by our team and
will be available soon as part of ERCx.

Therefore, the idea underlying ERCx is that commonly used ERC token specifications, as well
as variants of them, are already formalized and incorporated in the tool. That is, ERCx “knows”
them. All the ERCx user has to do is to provide the Ethereum address of their token code. The
tool will check the code against the hardwired specification and yield a report of compliance for
that token. Go to https://ercx.runtimeverification.com, submit your code and see how you do.
Note, importantly, that ERCx is completely automatic. As a user, you don't have to provide
specifications, you don't have to provide invariants, you don't have to provide lemmas, you don't
have to provide anything but your code. ERCx will check compliance automatically for you.

We intend to develop more tools of this kind on top of our language semantics. This is what the
K framework has been designed for. We define the semantics of a PL once, and then all the
tools that make use of that semantics are defined on top of it. The tools I showed so far were
instantiating the K framework with the EVM semantics. But the K framework is generic. We can
instantiate it with any programming language, even C.

New: RV-Match

RV-Match is one of the tools in our company where the K framework is instantiated with the C
programming language. It is one of the oldest tools in RV. However, there are some new
developments and improvements to RV-Match. Specifically, in the context of verifying the
Firedancer Solana validator. This is a project in collaboration with Jump.

RV-Match, same like KEVM-Foundry, builds upon K instantiated with a formal semantics of a
PL, but hides all that complexity under the hood and minimizes the learning curve for users.
Essentially, as a user, you run your C tests normally; however, instead of using GCC, or
CLANG, or whatever compiler you use, you replace that compiler with the RV-Match
corresponding tool, which is KCC. So instead of GCC you type KCC.

This is how it works, on a code snippet from Firedancer:
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If you compile it with GCC and run it, the code runs just fine. However, if you replace GCC with
KCC, that is, if you compile with KCC, exactly the same parameters, the same command line,
and then you run the resulting binary, you get an error:

The error above is an infamous “undefined behavior” and you get exact precise pointers to the
C standard, explaining this kind of undefinedness. Basically, undefined behavior means that
this program can behave completely differently on another platform. That's important to know in
the case of blockchain validators, because you want the validators to run your validation code
on different platforms, even on FPGAs, so it's very important to make sure that validators
implemented in C are free of undefined behaviors.

We only discussed the KCC tool of RV-Match. Other tools, like a symbolic bounded model
checker and a program deductive verifier for C, are also part of RV-Match, but they are still
under development and harder to use, so we do not discuss them here. RV-Match is therefore
a framework for C program analysis, an instance of the K framework with the formal semantics
of C. It is the most comprehensive C formal semantics and, importantly, it is ISO compliant.

I certainly didn't do justice to all the new developments in the K framework in the last one year
and a half. For example, I didn't say anything about the semantics of Tezos' Michelson,
KMichelson, or Algorand's virtual machine semantics, KAVM, or the semantics of Cardano's
Plutus, KPlutus, which basically all enabled tools like the ones we saw previously for all these
blockchains. What I really wanted to illustrate with the previous few examples, is that, first, K
matured enough to be used as the core infrastructure of very practical tools for the respective
languages defined in K. And second, that K with all its complexity and power, can be hidden
under the hood by such tools that have a user-friendly interface.

In other words, you have the full power of K at your service, but at the same time you don't need
to access that complexity unless you really want to and you know what you are doing. And with
this, we are ready to move to the next section, where we talk about … why should you trust K?

Matching Logic — Foundation of K (and Coq, Lean, etc)

As explained in the UTF – How? section, simplistically speaking, UTF = K + ZK. That is, in
order to provide claims with correctness certificates in the UTF, we first use the tools in the K
framework to search for mathematical proofs of the claims and then compress those into
succinct cryptographic certificates using a ZK circuit implementing a checker for the
mathematical proofs. What makes the UTF possible in the first place is that everything K
does for a particular PL instance is a proof of a theorem in the mathematical theory



corresponding to that PL formal semantics. We want to produce ZK certificates for these proofs.
In order to do that, we need to first understand how we can generate such mathematical proof
objects. In order to understand proof objects, we need to understand the logic underlying
everything K does, which is Matching Logic.

Matching Logic is the foundation of K. And not only of K; it can also very well and it does serve
as a foundation of languages like Coq, Lean, and other interactive theorem provers; more
details are discussed shortly. It is the smallest logical foundation known for languages and
formal verification, that has this expressiveness (monadic second-order logic). Its most general
form, which includes support for least fixed points, was proposed in a LICS’19 paper and it is so
small that you can write it on a napkin:

This is the entire logic. It has 7 syntactic constructs for building formulae, called patterns in
Matching Logic, and 15 proof rules. We only showed the proof rules above (the syntactic
constructs can be inferred from the syntax of patterns). These are mathematical, logical proof
rules, not cryptographic proof rules. Mathematical proof rules, aka inference rules, allow you to
derive a conclusion once you derive the rule premises. When a rule has premises, they are
written above a horizontal line, while the conclusion is written underneath the line. See the
modus ponens rule, for example: you can derive 𝝍 once you derived 𝝋 and 𝝋 → 𝝍. There are
five rules with premises in Matching Logic. When an inference rule has no premises, it is called
a fact, or an axiom. There are ten axioms in Matching Logic. By abuse of language, patterns
that are part of the mathematical theory 𝜞 defining the semantics of a target PL, are also called
axioms; we may use axiom of 𝜞, or axioms in 𝜞, to avoid confusion with the general, theory
independent Matching Logic axioms. For all practical purposes, the generic axioms of Matching
Logic and the axioms in a theory 𝜞 are used the same way in proofs. But it is common to keep
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them separate and think of the former as part of the logic, while of the latter as part of the
theory. The former can be used in all proofs, while the latter only in proofs of 𝜞 theorems.

With these 15 Matching Logic proof rules you can derive, starting with axioms, theorems of
interest. And such theorems are correct by construction, because you construct actual proofs
for them, using the proof system. This very small proof system allows you to define any
programming language as a theory 𝜞 and any claim you make about that language, including
that a certain program execution is correct wrt the language semantics itself, that a certain
program is a correct implementation of a certain specification, that a certain “bad” state (e.g.,
division by zero) cannot be reached in a given program regardless of the input, etc., as a
theorem 𝝋. Why? Because we have a translation from K to Matching Logic. Let’s be more
formal. The fact that 𝝋 is provable in 𝜞 is written 𝜞 ⊢ 𝝋, and a (Hilbert-style) proof, or a proof
object for it, is a finite sequence 𝝋1, 𝝋2, …, 𝝋n, where 𝝋n is 𝝋 and each 𝝋i with 1 ≤ i ≤ n is either
an axiom (of matching logic or in 𝜞) or derivable using one of the five matching logic proof rules
with premisses, from previously derived patterns used as premises; i.e., there is one proof rule
instance whose conclusion is 𝝋i and whose premisses are among 𝝋1, 𝝋2, …, 𝝋i-1.

In fact, in spite of its simplicity, Matching Logic is very general and expressive. Everything that
not only K does, but also what Coq, Lean, as well as other interactive theorem provers do, some
based on complex type systems, all these can also be framed as provable Matching Logic
theorems of the form 𝜞 ⊢ 𝝋, where 𝜞 is the theory and 𝝋 is the theorem that is proved. We have
a paper in ICFP’20 – the International Conference on Functional Programming – in which we
show how the proof systems underlying these interactive theorem provers can be shallowly
embedded in Matching Logic. That means that they are just notations, that they can be
desugared mechanically into Matching Logic theories, and proofs. In other words, we can use
not only K, but also Coq, Lean, and other interactive theorem provers, to generate proofs that
then can be checked with the Matching Logic proof checker (discussed shortly).

However, we prefer K. First of all because we as a team understand its code base well: if we
need anything, we know where to ask help. But also, in K, computation is proof. Directly.
Indeed, when you execute a program using the K generated interpreter, say that you execute
factorial(3) and get result 6 using the semantics of Java, an actual direct proof of that particular
claim is being produced by that particular execution. In other words, the program execution
yields a proof object 𝝋1, 𝝋2, …, 𝝋n, where we can think of each pattern in the proof sequence as
an execution step of the program. This is in contrast to other systems, like Coq, where you do a
proof and then there is a certain extraction mechanism, where you extract a program from a
proof, but only if that is done in a certain fragment of Coq, which is constructive in such a way
that you can extract actual programs from it. We don't need this extraction mechanism in K; the
execution of the program is a straightforward and rather boring (for humans) proof object.

Second, K is very fast: its interpreters automatically generated from formal language semantics,
for example, compete at performance with existing interpreters specifically hand-crafted for
those languages. K has been specialized for programming languages, while many of these
other provers (Coq, Lean, and so on) are not specialized for programming languages; they are
general purpose mathematical provers, with emphasis on human interactivity and friendliness,
not on automation or performance.

Finally, we already have many programming languages formalized in K: C, Java, EVM, AVM,
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WASM, and so on. It would be a huge effort to translate all those into other other formalisms or
provers. Besides that, as I mentioned, we already have Coq and Lean backends to K.
Actually even more generally, formalizations of Matching Logic in these. With these, we can
take anything in Matching Logic and deeply embed it (i.e., encode it, in contrast to desugar it,
which would be a shallow embedding) into Coq or Lean. Thus, we can use these interactive
provers to derive proofs in Matching Logic. In fact, we actually use Coq significantly in our
company. Probably not as much as K, but almost as much as K. We are fans of and believers
in interactive theorem provers. The reason we use K, again, is that it is very intrinsically and
directly connected to Matching Logic, and Matching Logic allows us to produce very low level
proof objects that can be checked with the minimal proof checker that I will discuss shortly.

200 LOC Proof Checker for Matching Logic

To implement a proof checker for a logic, there are usually two levels. You first implement the
proof checker in some programming language. Then you compile that programming language
into something else, in order to execute it. For example, Coq's proof checker is implemented in
several thousands lines of OCaml code, and then that OCaml code is compiled down to lower
level architectures, like x86, going through LLVM and its optimized pipeline or through some
other compiler infrastructures.

In our case, for Matching Logic, we chose Metamath as an implementation language for our
proof checker. The reason we chose Metamath is mainly because it is a very simple language,
yet very low level and expressive at the same time. There are more than 20 Metamath verifier
implementations already: in C, Rust, Haskell, OCaml, and so on. Most of these Metamath
implementations have only a few hundred lines of code; the largest, in C, has 2500 lines of C
code. What we did was to implement Matching Logic in Metamath, or to define Matching Logic
in Metamath, as a Metamath theory, in 200 lines of Metamath code (199, in fact). It looks like in
the left column in the picture below, where we can see some axioms (axiom-1, axiom-2) and the
modus ponens rule:
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Very mathematical, almost identical to our proof system. Therefore, the Matching Logic proof
system can be rigorously implemented, or defined, in 200 lines of Metamath code.

We can also encode claims and proofs of these claims in Metamath, like we have in the right
column in the picture above. Those proof objects are very long in practice. The proof above,
for 𝝋 → 𝝋, is simple and unusually short. We can similarly prove any claim. Anything that K
does can be translated into such a proof, possibly having millions of steps. Very long and likely
very boring proofs. But very precise and very low level. Exactly as we want them to be!

Basically, any claim derived with K or any other formal systems or interactive theorem provers,
in the end reduces to verifying a formal claim 𝜞 ⊢ 𝝋 in Metamath: under given theory 𝜞, a given
theorem 𝝋 is true because a proof object of it has been provided and has been checked.

The trust base consists of the 200 LOC definition of Matching Logic in Metamath, plus the few
hundred LOC implementation of Metamath itself. Indeed, we have to trust both of these.
Besides its soundness proved on paper (LICS’19), the (tiny) Matching Logic definition is
validated also by testing it against a large variety of languages, programs and proofs in those
languages. To minimize risk in the correctness of the Metamath implementation itself, which
can become an important issue in security-critical applications like blockchains, proof validators
can actually run all the Metamath implementations in parallel and only accept proofs that pass
all of them. Note that the Metamath language is precise and unambiguous. That is, if two
Metamath implementations disagree on an input, one of them has a bug that needs to be fixed.

The trust base of our Matching Logic approach is therefore orders of magnitude smaller than the
trust base of other frameworks, like Coq or Lean. This is not an accident: Matching Logic is the
result of more than 20 years of targeted work, designed from basic principles to be the smallest
possible without making compromises wrt expressiveness. The price to pay for its succinctness
and simplicity is that proofs are not human comprehensible. This was never a requirement, not
even remotely. Matching Logic can truly be thought of as the “machine-code of proofs”. On the
other hand, frameworks like Coq and Lean provide high-level, human-friendly abstractions and
properties, such as builtin (dependent) types, proof tactics and strategies, program extraction
from proofs, and many other goodies. The price to pay for these abstractions is that their
underlying logical formalism and thus proof checkers are more complex.

ZK-ing the Matching Logic Proof Checker

The Matching Logic proof checker is a program pc(𝜞,𝝋,𝜫) that takes three inputs:
● The theory 𝜞, which is the formal semantics of the programming or specification

language in which the claim is stated.
● The theorem 𝝋 that is claimed to hold under 𝜞.
● The mathematical proof object 𝜫 for the claim, which is usually very large.

Note that the first two arguments form the actual claim 𝜞 ⊢ 𝝋 that is being made, which is public.
The third argument, 𝜫, is expected to be automatically produced by tools and frameworks like
K; in theory, they can also be produced by hand, or any other means.

Next we want to implement the Matching Logic proof checker as a ZK circuit, to produce



succinct cryptographic proofs. Unfortunately, none of the existing implementations of Metamath
use programming languages with ZK proofs or cryptographic technology support. We have
recently completed the first steps in this direction. What we've done, specifically, was to
re-implemented Metamath in a version of Rust, more precisely in a fragment of Rust using some
libraries that are supported by RiscZero's compiler and their zkVM infrastructure. Executing the
Matching Logic proof checker implemented in this new version of Metamath on the RiscZero
infrastructure, we can now generate a succinct SNARK proof certificate that a mathematical
proof object for the claim exists.

Formally, our SNARKed implementation of the Matching logic proof checker produces a
cryptographic certificate 𝝅 for the fact that there exists a 𝜫 such that pc(𝜞,𝝋,𝜫). Although
there could be situations where one may want to keep 𝜫 private, e.g., for commercial reasons
or because it may reveal information intended to stay private, currently our main reason to
SNARK 𝜫 away is its size: 𝜫 is simply too large to be practically shipped as a correctness
certificate for the claim that it proves.

This is still a work in progress, a collaboration with Tim Carstens and his colleagues at
RiscZero, and also with my UIUC colleague Andrew Miller and his research group. Note that
Andrew Miller is also a cryptography advisor in our company. The results so far are
encouraging, although performance of SNARK proof generation is currently the main bottleneck;
this is consistent with other ZK projects, which appear to all suffer from the same fundamental
problem – ZK proof generation is slow. We are now in the process of experimenting with
RiscZero zkVM’s nascent support for recursive STARKs.

It should be clear that, unlike other ZK projects which are bound to a particular ZK infrastructure
(blockchain, language and/or library), we do not depend on RiscZero’s infrastructure. If
RiscZero eventually gives us an efficient ZK proof generator, then we will happily take it. But we
can similarly use other ZK infrastructures. In fact, we are currently in the process of
implementing our Matching Logic proof checker also in Solidity, in order to compile it and check
it with Polygon’s and others’ zkEVM, and in Cairo, in order to use StarkNet's infrastructure, as
well as in (a Rust variant that compiles to) LLVM, in order to use NIL Foundation’s zkLLVM. We
hope to be soon able to report on these experiments. The beauty and strength of our approach
is that if any of the aforementioned ZK languages deliver to their promise, namely that it will
efficiently generate ZK proofs for its hardwired language, then we can immediately leverage that
and provide the same efficient ZK infrastructure for all languages!

The unique feature of our UTF is the crystal clear separation between producing Matching Logic
proofs (with frameworks like K, Coq, Lean, etc) and verifying those proofs with a ZK-based proof
checker, which is same for the entire Matching Logic, that is, for all PLs and all specification
languages. This way we can compress large mathematical proof objects into succinct, even
fixed size ZK certificates. Unlike other approaches, like the ones mentioned above, we need no
ZK compilers, no ZK virtual machines, no program-specific or even language-specific circuits.
Thus no complex ZK artifacts that need to be trusted or formally verified. Of course, if we
implement our approach in any of the ZK languages above, we will need to trust or formally
verify our implementation as well as the infrastructure upon which it depends.

However, once we complete the experiments above, our plan is to implement a circuit directly
for our Matching Logic proof checker. After all, Matching Logic’s proof checker has only 200
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lines of code. We don't need to go through another ZK infrastructure or language. We can
manually craft a circuit, super optimized directly for Matching Logic. One circuit to rule them all,
because combined with a language semantics, it will be capable of producing ZK certificates
specific to that PL. Once we have an efficient ZK proof checker for Matching Logic, we can
therefore have the same benefits as all these other existing ZK approaches for specific PLs.

By going to the meta-level and observing the program execution as a rigorous mathematical
proof, we avoid the hard task of implementing a specific VM as a circuit. We keep the VM as is.
Actually, we don’t even need nor want a specific VM implementation, as that may come with
bugs and inconsistencies. From the formal semantics of the VM, which is non-negotiable in any
context where security is a must, we generate an executable model of the VM which allows the
Matching Logic proof checker to observe from the meta-level its execution and check it and
produce a ZK certificate of its existence. We re-emphasize that Matching Logic, as well as its
ZK-based proof checker, are unique for all languages, all specifications, and all properties. So
there is only one ZK circuit or cryptographic artifact.

The curious reader is encouraged to note that our approach generalizes not only all the
language-specific ZK approaches discussed above, but also Verifyable Computing and
Proof-Carrying Code. Indeed, it offers those for any language with a formal semantics.

More Powerful than Language-Specific Solutions

The UTF is more general, because it is universal, and yet it yields a smaller trust base and
ultimately a smaller and simpler ZK circuit than language specific solutions.

We next only consider zkEVM, for the sake of concreteness. This is just one example. The
same would happen with the Cairo PL (StarkWare), the zkVM of RiscZero, or the zkLLVM of the
NIL Foundation. All of these would suffer from the same problem. The UTF is more powerful
than all these, for the same arguments discussed below in the context of zkEVM. Before we
dive into details, recall that the UTF has only one cryptographic artifact which needs to be
trusted or formally verified, a ZK circuit implementing a 200 LOC proof checker, which works
with all claims about all programs in all programming languages. Everything else being equal,
this is already a big and unique advantage of our approach over the language-specific solutions.

I’d like to say it upfront that we are very impressed with what the Polygon team achieved overall
and we are users of Polygon ourselves and grateful to their ecosystem! Our discussion here is
purely factual and scientific. Our goal is not to criticize their methods or approach, but simply to
explain our approach and convey to the reader our new technology, by comparison with an
already established technology. If anything, we acknowledge zkEVM as the most
well-established competitor. Besides, our idea, method and approach were not available when
the Polygon team started implementing zkEVM. Even now, our approach still requires some
more work and experiments before it becomes a viable replacement of the existing
language-specific approaches.

The way zkEVM works, at a high level and only for our specific purpose here, is that you make
an execution claim using EVM, 𝝋 let's say, and get it through the zkEVM circuit. The zkEVM will
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produce a ZK proof of that execution, say 𝝅𝝋. So at a very high level, you have an execution
claim 𝝋, you get it through the zkEVM which gives you a certificate 𝝅𝝋 that confirms execution is
correct. This is a very strong correctness claim, in the sense that it requires a significant
amount of blind trust from us, trust in informal arguments and unverified code, as discussed
shortly. The first question is: correct with respect to ... what!? I will get back to that, but for now
let’s move on with this high-level intuition for zkEVM. See the left side of the picture below.

In contrast, the UTF, shown to the right in figure above, produces cryptographic certificates for
the correctness of any claim given as input, not only for execution claims like zkEVM. A
non-execution claim can be that a given EVM bytecode is a correct ERC20 implementation, for
example. So the UTF approach is more powerful than zkEVM even if we just stop here. But
there is more. As a reminder, the “UTF approach” here means that we plug the EVM formal
semantics into the K framework, and then we use the generic ZK Matching Logic proof checker
to certify mathematical proofs for EVM execution claims that are produced by the K framework.
For that reason, we here refer to our generic approach instantiated with EVM as ZK[K[EVM]]:
plug EVM into the language-parametric K framework, then plug the generated mathematical
proofs into the framework-independent (i.e., not specific to K) ZK Matching Logic proof checker.
The EVM semantics plugged into K yields an executable model of EVM, an interpreter basically,
but one which can produce the mathematical proofs of execution.

Again, the UTF approach works for any claim, not only execution claims. But for now, let's just
deliberately limit the UTF to input claims that zkEVM supports, namely just normal executions of
EVM programs. So we have such a claim, 𝝋, that some program execution produces a certain
result, and K[EVM] produces a mathematical proof, 𝜫𝝋, which is precise but likely very long.
The large size of 𝜫𝝋 is not a problem, though, because we check it with our ZK Matching Logic
proof checker, get a succinct cryptographic certificate that a mathematical proof for the claim 𝝋
has been produced and has been checked, and then we can discard the long mathematical
proof 𝜫𝝋. Note that the cryptographic certificate produced by our approach ZK[K[EVM]] may be
different from the one produced by zkEVM, because different ZK methods may produce different
certificates, both succinct and both confirming the same truth, that 𝝋 is correct.
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Hence, both zkEVM and ZK[K[EVM]] get the same overall result on execution claims. But the
question is how they do it. zkEVM implements a very complex circuit. With the help of several
zkEVM experts and friends from the EVM community, we tried to measure how large the trust
code base for the zkEVM circuit is. It turns out that it is anywhere between 30,000 LOC and
more than 1.5 million LOC, depending on how you count. Would the generator of the circuit
also be part of the trusted code base? Would the implementations of the two additional
programming languages that the zkEVM team invented in order to specify the circuit also count
as part of the trusted code base? None of these were formally verified, not to mention that it is
not even clear what formal verification means in this context, so they just need to be trusted.
But even in the most optimistic possible counting scenario, where all languages and compilers
involved are assumed correct, zkEVM still has more than 30,000 LOC that implements a rather
complex VM as a circuit. Why should we trust all this code? Folklore and experience in
software engineering tells us that good quality code still has a bug in every 1000 LOC.

The big claim the Polygon team makes is that their zkEVM is a correct implementation of EVM
as a ZK circuit. That is, that 1.5+ million LOC implement a hypothetical language specification.
Indeed, there is no EVM rigorous specification that they claim their circuit implements. They're
just saying, in words, that they try to adhere as much as possible to the Yellow Paper. The
Yellow Paper is already obsolete, that's broadly accepted. The only complete and religiously
maintained formal specification of EVM that we are aware of is the KEVM semantics, which they
do not mention anywhere in their documentation. It is therefore safe to assume that there is no
reference formal specification of EVM that zkEVM implemented. Moreover, even informally, it is
very likely that they implemented an older version of EVM, because in the meantime, EVM itself
suffered a few upgrades. That is, there is likely a gap between the EVM version implemented
by zkEVM and the actual EVM on Ethereum they claim compliance with. Unless zkEVM is
generated directly from an EVM specification, like our ZK[K[EVM]] does, there is a good chance
that there is a semantic gap between EVM and zkEVM.

My point is that zkEVM has a complex code base, manually crafted and specific to one VM
language. One language! A complex, adhoc circuit claimed to implement something which is
not rigorously specified. Suppose that the Polygon team decides to do things right and increase
confidence in their zkEVM by formally verifying their zkEVM circuit. How is that even possible?
Against what EVM specification?

Contrast that to our UTF approach, ZK[K[EVM]], where we just plug and play the EVM formal
semantics into the framework and obtain the same results as zkEVM, but in a
correct-by-construction manner. In our Proof Chain proposal, formal semantics of languages
will be stored on the blockchain, vetted/signed by appropriate entities that are in charge of the
language. For example, the EVM formal semantics should be stored at some address on the
blockchain, vetted by, probably, the Ethereum Foundation (EF). When this happens, the trust
base of ZK[K[EVM]] reduces to only the circuit implementing the 200 LOC proof checker!
Indeed, notice that we don't have to trust K; the role of K is only to search for and produce
mathematical proof objects. The proof objects are checked with the ZK Matching Logic proof
checker, which takes as input the exact same EVM formal semantics that K used to produce the
proof objects, vetted by the EF.

There is, therefore, a sharp contrast between our generic approach and the VM specific
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approaches. Recall that the discussion above used zkEVM / EVM as an example, but that we
can instantiate our framework with any other language instead of EVM. Indeed, neither K nor
the Matching Logic proof checker know anything about EVM, or about C, or Java, or Cairo, or
RISC-V, or LLVM, or Plutus, or about any particular language. These are just formal semantics
in K, or mathematical theories in Matching Logic, ideally available in some public and trusted
places, like on blockchains, vetted by their respective committees. Moreover, there is only one
ZK artifact, implementing the 200 LOC Matching Logic proof checker, to be used with all
languages. When you plug a given formal language semantics into our framework, you can
then produce cryptographic proofs for any claims about that language, in particular for
executions.

As I mentioned earlier, I believe that blockchains of the future will not even have VMs in their
validator nodes. VMs are complicated and error prone. Further, to implement a ZK circuit for an
entire VM is a very complex task which, as I showed, is unnecessary. I firmly believe that in the
future, we will have formal semantics of languages that we want to use to describe protocols, to
describe smart contracts, transactions, and those are stored on the blockchain, vetted by their
communities, and then you can generate from them directly an execution engine on your local
machine and run your transactions locally, produce the mathematical proofs and then generate
a ZK certificate of existence of that mathematical proof. You present that to the other nodes in
the blockchain and with a lightweight consensus protocol that executes only one program, the
ZK Matching Logic proof checker, the entire network synchronizes. This way you can write
smart contracts in any programming language for which we have a formal semantics. It is that
powerful, yet that simple and correct-by-construction.

Next I'd like to talk about two imminent recurrent revenue products that we are going to launch
very soon, in 2023. One of them will produce revenue pre-deployment of client smart contracts,
and the other one will produce revenue post-deployment. If you are more interested in how the
UTF can be used to give birth to the Proof Chain, then skip there.

2023 Recurrent-Revenue Pre-Deployment Product
KaaS — K as a Service

The pre-deployment product that we will launch in 2023 is the "K
(prover) as a service", or KaaS, which works as follows. Take
any of the tools that the K framework provides. For simplicity,
think of a program verifier. But it can also be an execution
engine / interpreter, or a model checker, or a symbolic execution
engine. Usually, a K tool takes inputs. The PL semantics is
almost always an input, but there could be other inputs as well,
such as hints, lemmas, etc. The figure to the right, for example,
shows the inputs that the K formal program verifier currently
takes. The arrows indicate that the inputs are passed to the K
tool. Based on the inputs, the K tool will do its job and it will tell
us its output, for example, True or False.

During the last few months, we refactored the K framework and its tools to identify and isolate
those components which do the actual mathematical proofs, the actual hard work. Then we



implemented an API that encapsulates those components in charge of proving and exposes
them programmatically. In other words, we can now interact with the K prover using an explicit
API. For internal use, we configured a SaaS-style server, which we call KaaS, that runs on
AWS (we are experimenting with other cloud services, too). The various K tools now call into
KaaS whenever they need to do or generate any mathematical proofs. The following picture
illustrates how KaaS is used by the K tools:

Separating the K prover code base and offering it through an API via KaaS has the technical
benefit that it can be now advanced independently of the other K tools. Indeed, we have
already added several optimizations and parallelization to make it fast, and more optimizations
and improvements are added daily.

Our plan is to monetize our K proving technology, by means of KaaS subscriptions. The idea
here is to offer lots of tools, like the K program verifier which works with any programming
language, like KEVM-Foundry and like ERCx for Solidity and EVM, as well as similar tools that
will work with other languages and blockchains, like Rust and WASM on Polkadot, MultiversX,
Solana and others, like KAVM and KTeal on Algorand, like KMichelson on Tezos, like Plutus on
Cardano, etc., but also C or Java in safety- or mission-critical systems (aviation, medical,
automotive, embedded). We have almost completed the K formal semantics of many of these
languages, as paid engagements with various clients (detailed in our RV Blog), and we are
currently working on developing formal verification, symbolic model checking, and testing tools
for these respective ecosystems. These tools will be offered to the community, together with
documentation and education material, including regular workshops.

We ultimately want a large number of smart contract developers as well as developers of safety-
and mission-critical software to use our K-powered tools on a daily basis. We remind the reader
that the K framework code base has always been open source on Github, under the permissive
MIT license. In fact, many of our clients explicitly said that they chose RV over other formal

https://runtimeverification.com/blog
https://github.com/kframework


verification auditors for this exact reason, that our technology is open source. We have no plans
to change that, K will continue to be open source and available to everybody everywhere.
However, users of the K-powered tools who are interested in special features and
functionalities, good user experience, in particular in performance and in our undivided
attention, will have the option to buy a subscription to KaaS. Subscribers will take advantage of
maximum parallelism, optimal proof generation and caching with KaaS in the cloud, which can
result in waiting seconds for a proof to be done in the cloud instead of minutes or hours with the
free version of the prover on a local machine.

Subscription-based models for software analysis products are common practice. That’s how
many tools in the embedded systems and mission-critical space are delivered, for languages
like C and Java, and also how formal verification companies like Certora offer their technology
to paying Ethereum smart contract developers. Therefore, developers will find no surprise in
our offering, except, perhaps, that we will also offer a free version of our prover. However, we
have several unique advantages over our competitors, which we believe will position us
favorably long-term:

1. K’s semantics-based approach to formal verification results in many, possibly thousands,
small proof obligations for a given property to be proved, instead of one large proof
obligation like in traditional formal verification. Indeed, traditional Hoare-style formal
verification approaches, including Certora’s, generate large SMT (Z3, CVC5, etc.)
formulae that incorporate not only the assertions to be proved, but also a significant
portion of the programming language semantics. That is, the program semantics is
encoded as part of the formula, which is then sent to the SMT solver. More often than
not, the solvers crash or run out of time or memory due to the inherent complexity of
solving such complex constraints. In contrast, our K-powered tools handle all the
programming language semantics themselves, in a correct-by-construction manner
executing the programs symbolically step-by-step driven by the semantics, same like
debuggers do, and only generate SMT proof obligations when a domain property that
requires actual domain reasoning is needed and cannot be discharged by the K tool
itself. Basically only to check the side conditions of the semantic rules, mostly. This
way, the SMT queries we make with our K-based approach are more tractable, usually
being discharged instantaneously. More importantly, our approach is almost
embarrassingly parallelizable, in the sense that the various SMT queries can be solved
in parallel. This is a perfect scenario for our KaaS server solution.

2. K’s semantics-driven approach makes it possible to generate proof objects for the
properties that are proved, whose trust base is only the formal language semantics. I
re-emphasize that this is only possible because our proofs are driven by the language
semantics itself and various general-purpose, language-agnostic automated procedures
implemented by our K tools. Tools based on traditional formal verification approaches
are language-specific, that is, the language semantics is hardwired into the tool, and
thus the tool itself becomes the trust base. One cannot thus separately audit and
validate the language semantics itself, because that does not exist as a separate artifact.
The translation itself to an SMT formula needs to be trusted in those approaches. It is
not easy, in fact in our experience it is close to impossible, to disentangle the language
semantics from the actual property being proved from SMT formulae and their solutions
using Hoare-logic, traditional verification approaches. Not to mention that the Hoare



logic itself, which is the mathematical foundation underlying the tool, needs to be proved
sound, which is well-known to be a hard task in itself even for relatively small languages.
For that reason, the soundness of the underlying Hoare logic is usually skipped in
practice. I am not aware of any such task for a real-world language, like C or Java, to
have been ever completed, in spite of attempts. This is a serious impediment when
trustlessness and correctness are paramount: without a soundness proof for each Hoare
logic proof rule one cannot generate proof objects as correctness certificates!

3. K’s semantics-driven approach allows us to generate proofs not only of verified
properties, like in formal verification, but also of program executions, like in verifiable
computing. It is this crucial capability of our approach, that computations are proofs,
which enables the UTF and, eventually, BoT. With traditional formal verification
approaches, even if all the technical problems like those mentioned above are resolved
(i.e., dealing with large and complex SMT proof obligations, and generating proof objects
as correctness certificates), one could only handle formal verification claims, but not
program execution claims.

4. The above will directly translate into multiple revenue streams for KaaS and our
company. Indeed, KaaS will be used not only by developers of smart contracts, but
potentially by any blockchain user. Developers need proofs in order to formally verify or
validate their code, and to also convince their users that their code is high quality. But
blockchain users will need to generate proofs with every transaction they perform on the
blockchain, proofs which will be checked by validators before they validate the
transaction. Considering that developers are only a fraction of a percent of the total
number of blockchain users, and that the same user can make many transactions per
day, the possibilities for KaaS to produce revenue take us to another dimension
compared to our competition.

5. Finally, thanks to K’s language-parametric nature, KaaS works with all programming
languages and all blockchains! That is, there is no specific support added to KaaS for
Solidity, or EVM, or Rust, or WASM, or C or Java. These language semantics will be
stored in some public repository or on the blockchain, and KaaS will simply read the
language semantics from there. The more languages, the more developers, the more
users, the more KaaS usage. All these without us having to touch KaaS. We will help
the community develop high-quality semantics of popular languages and tools for them
that will make use of KaaS. KaaS has the potential to become the universal proof
generator, to work with all languages, all tools, and all blockchains based on ZK
technology.

2023 Recurrent-Revenue Post-Deployment Product
Invariant Monitoring & Recovery

The second product line we have slated for 2023 is blockchain runtime monitoring. These smart
contract specification and invariant monitoring and recovery products leverage the specifications
and invariants statically proven during the audit to offer value to our clients (and revenue to our
company) after the target smart contracts are deployed. They can be used to monitor and
inform clients about the health of their deployed contracts, and can even automatically launch



corrective action when invariants are broken.

These products are perfectly aligned with the mission of Runtime Verification. The primary
outcome of a formal verification audit is the identification of the specifications and invariants that
must hold true when the smart contract is deployed and operational. In other words, since
auditors create the exact formal specifications and invariants, they have the best understanding
of what needs to be monitored at runtime.

We have a rich history of developing runtime monitoring techniques, systems, and tools, and
even coined the term “runtime verification” in 2001. In conjunction with my NASA colleagues, we
envisioned a technology that takes the same input as formal verification to perform light-weight
runtime monitoring and recovery after deployment. Some of our early runtime monitoring and
recovery systems developed at NASA and UIUC can be found on the RV Wikipedia page. We
also developed some monitoring systems at RV Inc., before we moved into the world of
blockchain: RV-Monitor for embedded systems and RV-ECU, to monitor vehicle ECUs in the
automotive domain, to name a few.

The key learning we took away from developing runtime monitoring and recovery products over
the past 20+ years is that the hardest part, by far, was to come up with the right properties to
monitor. Typically it requires working closely with clients, domain experts, safety engineers, and
standards committees who often do not have a background in formal methods and are more
concerned with politics than system safety and security. All that aside, once these properties
are available, the rest was relatively easy. Simply instrument the system to correctly observe the
relevant events, automatically generate monitors from the safety specifications, and steer the
system through recovery actions when violations happen. We cannot emphasize enough how
fortunate we are to already have the specifications and invariants that must be monitored, as
well as the adequate recovery actions! All we have to do now is leverage our expertise to
generate the correct monitors from these specifications, observe the activity of the monitors,
and trigger transactions if necessary.

Over the last few months we have been experimenting with runtime monitoring of smart
contracts for our clients. Through this work we identified two broad categories used to classify
our monitoring and recovery products:

Without Recovery. In this category the monitor observes the behavior and activity of the
specified accounts and notifies account stakeholders off-chain. These monitors are harmless to
the blockchain as they trigger no transactions. The notifications produced by these monitors
can trigger corrective actions by the stakeholders based on recommendations identified during
the audit process. RV has been working with clients to monitor invariants identified during their
smart contracts audits, as well as any additional properties of interest to the customer. These
monitors inform stakeholders of the health status of their protocol, particularly in cases where
specifications and invariants were violated.

With Recovery. The second category of monitoring services involves triggering recovery
transactions. Monitors that fall into this category include protocols in which correctness is
conditioned by assumptions that must hold at runtime. For example, in a lending/borrowing
protocol like Aave, the primary property proven is that all loans must be overcollateralized under
certain assumptions. In these cases, these assumptions must be monitored and recovered as
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quickly as possible to prevent damaging results. In the Aave example, the only way to protect
protocol health is to liquidate any undercollateralized loans. If these undercollateralized
positions remain un-liquidated, the invariant is broken.

Runtime Verification is developing monitoring solutions to address three primary use cases:

1. Smart contract owners who completed their audit and are interested in analyzing the
health of their smart contract post-deployment. In particular, they want to know if the
security audit claim assumptions are indeed maintained. If these assumptions are
violated, they may take actions to maintain their smart contract runtime health, or have
third parties (e.g. Keepers) do it on their behalf.

2. Keepers interested in maintaining smart contract health for smart contract owners, other
stakeholders, or simply because they want to make a profit. Keepers subscribe to our
monitoring services to help them maintain protocol health.

3. RV as a Keeper to protect the protocols of the customers we audit. We are currently
performing Keeper Services on three different blockchains (Ethereum, Algorand, and
MultiversX, formerly Elrond) , for protocols that we audited and/or understand well.

Through these projects we have learned several important lessons:

First, efficient instrumentation and observation of transactions is critical for successful
monitoring. We experimented with existing blockchain indexing services, like those offered by
The Graph, and to our disappointment they were too slow for our needs. By the time our
monitors were triggered the invariants were already violated or the liquidation transaction had
already been made by another keeper. We ended up using combinations of such services and
our own instrumented validator or observer nodes, reducing the monitor latency from seconds to
milliseconds.

Second, MEV plays an important role that must be taken seriously. Some recovery transactions
which were good in principle were MEV-ed by other players. We are currently investigating how
to make optimal use of our K-powered technology, which should give us at least two advantages
over our competitors:

1. K has a built-in search capability, which finds optimal sequences of transactions to
maximize a certain function on the program configuration; it was for this reason that K
was used as a modeling language in projects that lead to the introduction of the MEV
concept itself.

2. KEVM is a faithful semantics of EVM, which allows us to measure and model the exact
execution of transactions using the aforementioned search capability. Moreover, our K
Summarizer, described in a previous section, yields a semantics-based compiler for
EVM which, in our experiments, results in almost 10ox faster EVM program execution
than with existing interpreters. Combined with the search capability, this will give us
100x more time to search for optimal grouping of transactions than the MEV competition.

The two products that I mentioned, K as a service (KaaS) and runtime monitoring and recovery,
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leverage both our reputation as formal verification centric security auditors, and our open-source
K-powered technology. These cornerstones of RV represent more than 20 years of cutting edge
experience that goes beyond the state-of-the-art in programming languages and formal
methods. These products will augment the revenue from our security auditing services, tools,
and other products we provide for our clients. As these products grow we will redirect our
security auditing services to focus on essential, strategic engagements. Furthermore, this
product vision excludes the impact of ZK proof certificates, which will be an entirely new
revenue stream leveraging the unique capabilities of K, on top of everything we do already.

2024-2025: Commercializing Proof (of Proof) Certificates

Here we discuss our short term strategy to commercialize our capability to generate
zero-knowledge (ZK) proof certificates. In 2023 we plan to mature our prototypes and to do
more experiments and comparisons with existing ZK language implementations (like zkEVM,
Cairo, zkLLVM, etc.). In 2024 we plan to incorporate the ZK capability into KaaS and into our
formal verification security audits, and also start a few partnerships. By 2025, we plan to launch
our Layer 0, the Proof Chain.

First, recall how KaaS works (left and middle of picture above). The various K tools in the K
toolkit, which work with various programming languages and various blockchain ecosystems,
uniformly interact with KaaS, using a generic API, whenever efficient proof generation or
checking capabilities are needed. KaaS incorporates optimized algorithms, specialized
hardware, and state-of-the-art automated reasoning to prove claims as efficiently as possible for
the clients who are willing to pay a subscription fee in exchange for the best performance and
user experience that K and RV can offer. Tools usually produce an output, which for the sake of
simplicity we assume is binary: False, which usually means the tool was not able to find the
answer to the claim; or True, meaning that the tool has found a positive answer to the claim.

However, that answer, True, is based on the belief that the K prover and KaaS did their job
correctly. But K has 500k lines of code, in several programming languages, and mathematical



proofs can be and usually are quite complex. Then why should you trust K!? Or why should
you trust what RV or I or anybody else claims? The point and beauty of proof objects is that you
don't have to trust anything and anybody who cannot ultimately produce a proof for their claim.
That is, there is nothing and nobody staying between a claim and its validity, except for a
mathematical proof which can be checked by anybody who has it. This is the ultimate
correctness argument, developed by humans over thousands of years, which no one can
temper with if implemented correctly. And our job here at RV is to do precisely that!

As mentioned throughout this article, the main problem with mathematically rigorous proofs is
their size. They can be and usually are huge. However, this issue is elegantly addressed by
our ZK Matching Logic proof checker, which simply checks the long proof objects with a small
proof checker program that produces corresponding ZK proof certificates, as shown to the right
of the picture above. The overall effect is that the huge proof objects are now massively
compressed into succinct ZK proof certificates, ideally fixed size, which can be checked by any
third party instantaneously.

There could be many different ways and architectures to generate ZK proof certificates and
deliver them to users. Since KaaS is already specialized and optimized to produce
mathematical proofs, and to do that effectively it will make use of high-performance
computing/hardware and pipelining, we believe that KaaS is uniquely positioned to also produce
ZK proof certificates. We re-emphasize that although KaaS is a centralized service by design,
meant to bring RV revenue over the next several years, its role is exclusively to provide its
subscribers with proof certificates as efficiently as possible. KaaS will not pose any risk to the
correctness of the overall framework. It will not be part of the trust base, by design. In other
words, there is nothing that KaaS, or anything or anybody can do to “trick the system” into
making an incorrect claim appear as true.

We truly hope that KaaS is only the first product of its kind, and that other companies will be
inspired to develop similar products. Indeed, recall that Matching Logic is more general and
powerful than K. It can similarly serve as a minimal foundation for other proof frameworks, like
Coq, Lean, etc. And in theory, any program verifier and any interpreter can be instrumented to
produce rigorous mathematical proof objects. K was designed in this spirit from first principles
starting 20+ years ago, and thus has the competitive advantage of being a first mover, but there
is nothing specific to K in our overall idea. On the other hand, for all the reasons already
discussed, mainly for its minimality and expressiveness, we are firmly convinced that matching
logic is perfectly suited for proof objects and the ZK proof checker. Because of that, we will
design KaaS in a way that allows us to separate the ZK Matching Logic proof checker from the
K prover itself, in order to offer it as a separate service if/when needed.

We next discuss our commercialization plan for ZK proof certificates.

First, notice that KaaS will already give us a stream of revenue from subscriptions even without
the ZK proof capability, because it will be invoked by all tools built on top of K, for all
blockchains. Subscriptions from developers, e.g. using tools like KEVM-Foundry to check their
smart contracts; subscriptions from users and investors, e.g. those using tools like ERCx to
check the tokens they want to acquire or bridge; and subscriptions from other security auditors
who will use K-powered tools in their audits.



Second, notice that KaaS’ capability to generate ZK proof certificates will open to our company,
at a minimum, all the revenue streams available to other businesses producing ZK certificates.
Take zkEVM as an example. We will be able to produce ZK proof certificates for any EMV
smart contract execution, same as zkEVM. Moreover, as explained in a previous section, in fact
our approach conveys higher confidence in the correctness of the produced ZK certificates,
because of a crystal clear separation between formal language semantics, proof objects, and a
unique, language agnostic ZK circuit to check them. Recall that the latter implements a proof
checker which has only 200 LOC. Besides its correctness, our approach also has the benefit of
working with all languages and all VMs, and thus with all blockchains. In layman terms, it offers
the benefits of zkEVM, Cairo, zkLLVM, zkVM, etc., all together using the same infrastructure
and the same ZK circuit, by just plugging and playing the respective language or VM.

We believe that the generality and strength of our approach will position RV as a major player in
the ZK arena over the next few years. Shorter term, over the next one to two years, however,
we plan to achieve the following concrete objectives:

1. Offer our formal verification artifacts as ZK proof certificates, in addition to PDF
documents and/or github readme files. This is a low hanging fruit, because we already
do the formal verification proofs using the K prover, and we have already implemented
and published a proof object generator for the K prover. Several of our clients have
asked for such a capability. This is not only the right thing to do, but having undeniable
evidence of smart contract correctness on the blockchain can open a new range of
applications. Consider, for example, a bridge meant to allow transfers of arbitrary
ERC20 tokens. Since some ERC20 tokens are scams, like rugpulls, making sure that a
token correctly implements the ERC20 specification becomes critical for such an
application. This can be checked with tools like our ERCx tool/product, but wouldn’t it be
nice for such proof evidence to be stored on-chain, trustlessly, by that token’s creators or
stakeholders or anybody else, once and for all, so that such tokens can be added to the
bridge automatically, by anybody? We plan to work closely on this topic with our clients
who hired us to audit related smart contracts, such as Blockswap (regarding their
Gateway) and Jump Crypto (regarding Wormhole).

2. As mentioned, we can do with our general approach everything that other entities
(companies, foundations, etc.) producing ZK certificates can do, and as explained, we
even have several advantages. However, we believe that partnering with such entities
and helping them push their agenda faster and better is more beneficial to RV. At least
in the short term. For our long term vision, see the Proof Chain section below. There
are three categories of entities that we identified as suitable for potential partnerships:

a. Existing Ethereum Layer 2 ZK Rollups, like zkEVM (different variants), Cairo,
zkSync, etc. For these, we would provide alternative implementations for their
ZK languages or virtual machines, all using a unique verifier of ZK (matching
logic) proof certificates, that we would provide on Ethereum, implemented as a
smart contract. The Layer 2 / ZK Rollup off-chain infrastructure would use a K
semantics of their language (EVM or Cairo) piped with our unique ZK Matching
Logic proof checker.

b. New ZK-based blockchains or solutions, like RiscZero, zkLLVM, Urbit, etc., which
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chose to not present themselves as Ethereum ZK Rollups (although there is no
limitation in their design preventing them from doing it). Our proposed approach
would be essentially the same for these as for the Layer 2 ZK Rollups above,
except, of course, the verifier for our ZK matching logic proof checker would need
to be customized for each.

c. Existing Layer 1 blockchains, which do not have ZK rollups yet but which may
want to. Here the immediate candidates are our close collaborators, namely:
Cardano, Algorand, MultiversX (former Elrond). But we plan to contact more,
perhaps we will even have an open call to gauge their interest. From a
technological perspective, the only difference for us is the implementation of
blockchain-specific verifiers for our ZK certificates.

Our goal is to form at least one partnership in 2023, in which our ZK approach will
become their main ZK solution afterwards. In 2024, we aim at least at another one, but
in a different category among the three categories above. And in 2025 our goal is to add
at least one new partnership in each of the categories above, for a total of at least five
partnerships in total in 2025 onwards.

Proof Chain — The Ultimate Layer Zero

We gave a high-level introduction to our ultimate Layer Zero proposal, the Proof Chain, in a
previous section. Here we give more details and highlight the architecture and usage of the
Proof Chain. Before discussing the benefits of the Proof Chain, it is important to understand
what goes on-chain and what goes off-chain. Recall that at the core of the Proof Chain we have
the 200 LOC Matching Logic proof checker, which will be implemented as a ZK circuit.
Specifically, this results into two different ZK components, a common split in ZK projects where
one component is off-chain and the other on-chain, as shown below:



The first component, the ZK Certificate Generator, is the one which takes the long mathematical
proof object 𝜫𝝋 of the claim 𝝋 as input, and produces the (succinct) ZK certificate 𝝅𝝋 as output.
The ZK certificate generator component will be part of the off-chain stack and will likely be
executed on fast machines in clouds and warehouses and will be offered as part of larger
services by various for-profit companies, whose main role is to search for proofs of claims.
Searching for proofs is hard and open ended in terms of techniques used, which is good. Good
because it will stimulate competition, creativity, and new technologies to be used for a noble
purpose (eg AI/GPT, automated reasoning, specialized hardware, etc).

The second component is the ZK Certificate Checker. Its role is to check the ZK certificates 𝝅𝝋

and thus confirm the validity of 𝝋. The ZK Certificate Checker is fast and it will be incorporated
in the Proof Chain’s validators. In fact, validators execute only this program, the ZK Certificate
Checker, as part of the overall consensus. They will run no virtual machines and know nothing
about any specific programming languages. These will be part of the claims they check and will
likely be pulled from their Proof Chain accounts, for checking (not execution) purposes.

The picture below illustrates how the Proof Chain operates and shows its benefits:

I next elaborate on some of the advantages of the Proof Chain compared with the
state-of-the-art, and in the process of doing so I give more details on how it works:

● Simplicity. Proof Chain will essentially consist of only a lightweight consensus layer and
only one program to be executed by validators, the ZK Certificate Checker. In particular,
there will be no hardwired or predetermined virtual machine (VM) or programming
language (PL). The practical importance of this degree of simplicity cannot be
overestimated, because VMs and PLs usually evolve at a fast pace and thus would
require the validators, i.e., the blockchain, to be regularly upgraded. No VM or PL stood
the test of time unchanged. For example, EVM was so far upgraded at a rate of 2-4
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times per year. Even PLs or VMs created and developed by top language/compiler
experts, like Java and LLVM, suffered many upgrades: Java released 20 official versions
since its proposal in 1995 and LLVM released 16 major versions since its birth in 2003 in
our CS department at UIUC (by Prof. Vikram Adve’s group); if these languages powered
blockchains, then those blockchains would have been upgraded at least 20 and,
respectively, 16 times. This is not only inconvenient and risky, but can also raise
concerns with regulators, who might assume an entity in charge.

Once Proof Chain is launched, there will be no need to upgrade it! The rationale for our
claim is that while PLs and VMs need to upgrade in order to keep up with the evolution
of machines, programming abstractions, and education of new generations,
mathematical logic does not change. So it is a better choice for blockchains. This will
also simplify the interaction with regulators: there will be no entity in charge of or
responsible for upgrading it. Proof Chain will be as simple as Bitcoin, but with all the
additional features and benefits. Likely a commodity.

● Generality. In spite of having no predetermined VMs or PLs, Proof Chain will allow
programs (smart contracts) to be written in virtually all PLs and to be executed either
directly, by interpreting the PL, or via compilation to any VM if one chooses so. This will
be possible by simply adding the desired PL or VM on the chain, as normal data in a
normal account. Programs in said PL or VM are data as well, in other accounts. Any
execution or correctness claims of programs in such PLs become normal claims, which
will come with proofs that will be checked by the validators. Blockchains as we know
them today, or subnets or sidechains, become clusters of nodes in Proof Chain, all
related through a PL or a VM, or a topic of interest, or geopolitical regulations, etc. Proof
Chain’s mission is to provide the general infrastructure for such clusters to form.

● Correctness / Security. All claims on Proof Chain are checked by validators, using their
lightweight builtin ZK certificate checkers, and thus all claims are provably correct.
Correctness means that claims are mathematical theorems, rigorously derived from their
corresponding mathematical theories. For example, the claim that an ERC20 token was
correctly transferred from Ann to Joe is such a theorem, derived from the mathematical
theory corresponding to the EVM semantics and the ERC20 token implementation. Or
the claim that the ERC20 token implementation in EVM is correct is a theorem derived
from the theory corresponding to the EVM semantics and the ERC20 specification.
Proof Chain provides the infrastructure to know that claims made by any third party,
trusted or not, are provably correct. The “Garbage in, Garbage out” phenomenon cannot
be avoided, of course, no matter how rigorous proofs are. For example, if EVM has
inconsistent semantics, or if ERC20 specification is flawed, then the proved claims are
also inconsistent/flawed. See Separation of Concerns below, too.

● Bridge Security. This is a consequence of the above, but we list it separately due to the
big concerns around bridges. On Proof Chain, no bridges as we know them will be
needed in order to transfer assets from one cluster to another. Every transfer will be on
the chain, with normal transactions, secure as anything else. For example, to transfer 10
ETH from an account in the “Ethereum cluster” to an account in the “Cardano cluster”,
one would need to sign two transactions, one burning or freezing the 10 ETH in the
Ethereum cluster and another minting or unfreezing the 10 ETH on the Cardano cluster.
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The underlying smart contracts on the two clusters still need to be trusted, but Proof
Chain will allow stakeholders to formally verify them and post their correctness claim on
the chain as well. Otherwise, users may choose to use another bridge Ethereum <>
Cardano, which was formally verified.

● Efficiency. All the heavy lifting, that is, both searching for mathematical proofs and
generating the ZK certificates for their correctness, takes place off-chain. Only checking
the ZK certificates happens on-chain, which is fast and cheap. That means that once
the transactions are fully proved off-chain, using any mechanisms there ranging from
instrumenting interpreters to AI to search for mathematical proofs, they can be efficiently
deployed on the Proof Chain. Both the off-chain and the on-chain components can take
advantage of parallelism and transaction independence. The off-chain components will
dictate the latency, while the on-chain component will dictate the throughput.

When it comes to applications of ZK in practice, the elephant in the room almost always
is whether it will be fast enough. This is a place where we will put a lot of our effort in the
near future. But that future is optimistic, for three reasons. First, there are many recent
advances on the ZK front, and implementations, showing that ZK can be quite feasible.
In the worst case scenario for us, we will simply implement our matching logic proof
checker on top of the best of the existing ZK languages and we will get similar results to
theirs; indeed, mathematical proofs are linear in size with the executions they are
generated from, so there will be no complexity explosion due to generating proofs
instead of executions. Second, we will take the solution above generated using the best
off-the-shelf ZK compiler and dissect it and reconstruct it into a custom ZK circuit
specifically crafted for Matching Logic proofs; after all, we need only one circuit, for one
program, so we don’t need to pay the price of generality that comes with ZK compilers.
Third, although producing mathematical proofs is an inherently sequential task, which in
our approach requires no ZK support, checking such proofs is an embarrassingly parallel
process: the entire proof is correct iff each of its steps is correct; there is no need to wait
for proving the premisses of a proof rule application, they can all be checked in parallel,
yielding a perfect instance of the map-reduce paradigm.

The advantages mentioned above, namely simplicity, generality, correctness, (bridge) security,
and efficiency, are undoubtedly critical for the success and mass adoption of the blockchain
technology. Below I would like to mention two other advantages of the Proof Chain when
compared to existing blockchains, of a more economical nature:

● Separation of Concerns. One of the most important principles in engineering. When
separating a system into two or more well-defined components, each of the components
can be improved independently, even by different teams, without having to understand or
depend on unnecessary parts of the system. The Proof Chain massively separates
concerns, on different levels and dimensions.

First, the Proof Chain separates the PLs, VMs and other specifications from the
blockchain itself. Indeed, PLs, VMs, etc., become data (their formal semantics) stored in
accounts on the blockchain. Data that is vetted (signed) by corresponding entities, such
as the formal semantics of the EVM vetted by the Ethereum Foundation, or that of C
vetted by the C Standards committee, or that of the ERC20 standard vetted by its



authors or some other entity or community.

Second, the Proof Chain separates the PLs and VMs from their own implementations! In
particular, compilers can still be used, but are not really needed anymore, because one
can execute the program (off-chain) directly with the formal semantics of the language
itself, without translation to a lower-level (VM) language; in fact, this can even yield a
faster overall user experience, because there are fewer execution steps that need to be
proved. Also, implementations of interpreters or compilers or VMs can forgo the
expensive formal verification process, which is unavoidable when these are hardwired in
a blockchain that claims correctness. Indeed, these implementations will be executed
off-chain and produce a proof for each execution; if that particular proof is correct, which
is also verified off-chain, then it is ready to go to Proof Chain. In other words, the
implementations can be buggy and still produce correct instance executions in all
practical cases. We encourage the interested reader to check our ASPLOS’21 paper,
where we show how this principle, called Translation Validation, applies to real-world
compilers (from LLVM to x86).

Third, it separates responsibilities and, ultimately, blame when things go wrong. For
example, if a PL or a VM has an inconsistent formal semantics, then those who vetted
that language should take the blame. That may sound unfair for them, but it is better
than the current state-of-the-art, where we have 20 different implementations of EVM
following an informal specification that nobody is responsible for. In fact, the separation
of the language semantics from its implementations will improve both: implementers will
yell at language designers when semantics is unclear, so they will improve it; and once a
semantics is clear, implementers can go for aggressive optimizations without worrying
about other implementers following them as well to get the same results so they will not
be slashed. As far as the proof checks, execution is correct. Period. Optimizations
mean smaller proofs, so faster service, so happier clients for those doing them.

● Foster Innovation. We believe that the separation of concerns that Proof Chain offers
will stimulate and inspire participants at all levels, even more than the combined
blockchains today. First, and the most basic, Proof Chain can be regarded as a store of
value, similar to Bitcoin. Like Bitcoin, the basic capability of Proof Chain will be to store
and transfer its native token, plus to achieve consensus. Proof Chain’s consensus is on
claims, using one stable, simple and fast program (the ZK certificate checker). Nobody
will be in charge of Proof Chain, and it should never need to be upgraded.

Second, starting a “new” blockchain, or sidechain or subnet will be achieved with one
transaction, essentially adding its “theory” (the semantics of their PL, VM, DSL,
specification language, rules, etc.) to Proof Chain. Dependence on particular languages
or VMs will gradually disappear. Businesses can invent their own DSL targeted to their
application domain, then have their clients use it right away, as if they had their own
blockchain built on top of their DSL. Languages will evolve more systematically and less
painfully for developers, from one formal specification to another, everything
transparently on the Proof Chain.

Third, and perhaps most importantly, off-chain businesses focused on searching for
proofs will flourish. Indeed, anybody and anything can produce a proof to a claim,
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because the problem is well-defined and completely transparent. RV uses the K
framework for that, but other companies may use different formal methods approaches,
some/many/most even more automated than K. RV will have a competitive advantage
initially, because K was designed in the same spirit of separation of concerns as the
Proof Chain, and can already produce matching logic proof objects for certain claims
across different PLs and VMs. But we believe that in 2-3 years we will see many other
similar service providers, specialized on various types of claims: execution, formal
verification, (un)fake news, NFTs, etc.

Fourth, and closest to my heart, Proof Chain will encourage good practices, like formal
semantics, verification, formal reasoning, and mathematics education. For example, on
Proof Chain, a formally verified program is not only more trustworthy, but it can also be
… faster! Consider, for example, the sum-to-n program discussed previously. When we
formally verify it, we come up with its loop invariant. The loop invariant can be now used
to short-circuit the loop when we generate the mathematical proof. That is, instead of
going through the loop 100 times and thus generating a long proof, we go through the
loop only once, extract it as a lemma, then prove the main result “sum(100) = 5050”
using the lemma. In other words, with intelligent proof engineering, we can extract a
proof of this program’s execution which is much smaller than the naive proof obtained by
executing the program blindly. Developers of smart contracts will now be incentivised to
formally verify their code not only because that is the right thing to do, but also because
their users will see faster end-to-end execution and pay less gas.

Last but not least, Proof Chain will lead to applications and innovations beyond the reach
of current blockchains. For example, various mathematical theories can be formalized
for educational purposes, such as Natural Numbers and Mathematical Induction,
Euclidean Geometry, Algebra, Trigonometry, Group Theory, Category Theory, etc., the
same way PLs or VMs are formalized. Indeed, most of these can be axiomatized using
first- or second-order logic and least-fixed points, all of which subsumed by Matching
Logic. From Proof Chain’s perspective, there is no difference between such
mathematical theories and the formal semantics of EVM, Rust, or Java. Then classic
results in these domains, such as Pitagora’s theorem, become claims on the chain,
same as any program execution, or any transaction, or any formally verified token. I see
a future where much of our mathematical knowledge will be stored on the Proof Chain.
It is enough to formalize one or two of them, to serve as an example, and then
enthusiasts will define the rest, because this is not only intellectually interesting, but it
has an immense educational impact, teaching students how to do proofs rigorously.
Importantly, this body of knowledge will be immediately available to everybody and every
application, to be used to construct other claims and results. At a minimum, elementary
logic on top of the elementary cryptographic infrastructure offered by the Proof Chain
can be used to filter out deepfakes and fake news: the theory forming the assumptions
(author of the claim, other facts it builds upon, etc.) needs to be explicitly vetted by some
entity, and then the reasoning steps leading to the claim must be correct. It will put an
end to journalist’s favorite claim “not A implies not B” concluded from “A implies B”.



Why Now and Why Runtime Verification?

UTF is all about mathematics and logic and proofs, which have been around since forever. A
natural question then is why hasn’t UTF been done before, even before Ethereum or even
Bitcoin? Why now? And why us, why RV?

First, we believe that the idea underlying the UTF, namely the separation between uniformly
producing mathematical proofs as justifications for claims followed by their checking using a
universal ZK proof checker to produce succinct ZK certificates, is not obvious. Even if one knew
all the mathematics and had all the required technology available and all of it working well.
Moreover, even if the underlying idea may look somewhat natural in hindsight, to conceive it and
to find the energy and motivation to work out the details, one needs a foundational
understanding of computation, languages, formal executable semantics, formal verification,
logic, and cryptography, paired with a very strong belief that blockchain technology is the future.

As lifelong academics specialized in the above mentioned fields at a top research university
(UIUC), with extensive corporate experience in mission and safety critical systems even before
the blockchain era and then as top-tier security auditors of blockchain systems with focus on
language-independent formal semantics and verification, we believe that we were in a unique
position to put such an idea and vision together. All the scientific fields and beliefs mentioned
above were equally and critically important, in our view. For example, if we had a strong and
rigid opinion that formal verification is exclusively about proving symbolic properties of
programs, while program execution is “something else” and “not interesting”, as the traditional
formal verification community thinks, then we would have missed the chance to capture
verifiable computing and ZK language variants as special instances of UTF.

Second and more importantly, what made the UTF possible now and not before is the
convergence of three completely different and major scientific innovations, none of each
available a few years ago but all together truly available only now, starting with 2023:

● Scalable Zero Knowledge. While the concept of zero knowledge proofs was proposed
more than 30 years ago, in 1985, it was only recently that the ZK technology has been
significantly advanced, to a point where it has become usable at scale. This happened
thanks to a concerted effort by researchers, practitioners and investors, all motivated to
a large extent by ZK’s unmatched potential and benefits not only in enhancing privacy
and security, but also in significantly increasing the performance and scalability of
blockchains. We refer the interested reader to Ethereum’s ZK page for history and
learning material. Finally, it was only very recently, in 2022 and 2023, that ZK variants of
languages, like zkEVM, Cairo, zkVM, zkLLVM, etc., have demonstrated the feasibility of
the ZK technology to general-purpose computation.

● Matching Logic. Although the first paper mentioning the name “matching logic” was
published in 2009, it was only 10 years later, in LICS’19, when we finally figured out the
full strength and succinctness of the logic. The missing part that added its ultimate
expressiveness was the inclusion of set variables and the 𝝁 construct for least fixed
points. With these, matching logic has taken a central place in the realm of logics: any
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other logic of interest, from first-order to higher-order, from untyped to dependently
typed, can be captured as a matching logic theory; specifically, as a finite set of symbols
and axioms, plus a shallow embedding allowing us to desugar all the target logic’s
constructs as matching logic notations and to prove all its deduction rules as matching
logic theorems. Our ICFP’20 paper, eg, shows how to do it for dependent type systems.

The importance of such a logic cannot be overstated: it can serve as a uniform and
unique proof foundation for any other formal logic, and thus formal system, e.g., theorem
provers like Coq and Lean, language frameworks like K and thus interpreters and
compilers, or any program verifiers or symbolic engines or model checkers. The first
Matching Logic implementation was done in 2021, but the final 200 LOC implementation
was only finalized in 2023. Its minimality and generality make Matching Logic ideal for
UTF. As explained, Matching Logic was not an accident, but the result of a quest that
took several decades. The curious reader is referred to our papers on matching logic,
where we explain in detail why formalisms like Hoare Logic or Structural Operational
Semantics are not suitable (these are “design patterns'', to be adapted to each language,
while Matching Logic is a logic, where each language becomes a theory), why first-order
logic is too weak, why higher-order logic and dependent types are too complex/overkill,
why separation logic is both too specific (to heaps) and a design pattern (like Hoare
Logic), etc. The reader interested in what makes a logic more expressive than another
via theories and notations, without adding a deep embedding layer, is referred to our
2002 paper on institution morphisms and co-morphims.

● Proof Objects. In theory, any formal system backed by a logical formalism can and
should produce proof objects for every claim it proves. In practice, very few such
systems are capable of doing it. That’s because it is an unbelievably hard engineering
challenge, which challenged generations of top-notch formal verification engineers.
Unfortunately, not even the most prominent SMT solvers, like Z3 or CVC5, can produce
such proof objects yet; there are several attempts to do it, but no complete and
satisfactory solution. Proof assistant like Coq and Lean can produce proof objects for
theorems they prove, but those require proof checkers of thousands of lines of code in
complex languages that require compilation to be trusted, like OCaml, and to our
knowledge do not generate proof objects for program execution, a critical feature for
UTF (needed to capture verifiable computing and ZK language variants). To our
knowledge, the first work that demonstrated the “folklore” capability to reduce program
executions to mathematical proofs in a practical setting was our CAV’21 paper, where
we showed the first method to produce rigorous, machine checkable proof objects for
program executions, based on Metamath. That work was extended in our very recent
OOPSLA’23 paper to work with symbolic executions and thus arbitrary formal verification
proofs based on formal semantics. Consequently, there was no satisfactory solution to
proof objects as needed for UTF until 2023.

Therefore, it is the timely convergence of advances in zero knowledge technology, matching
logic, and proof objects engineering that makes the UTF and the Proof Chain possible only now,
in 2023. We were the creators and developers of two of these three general purpose scientific
advancements, as well as the creators and developers of the K Framework, which will play an
instrumental role in further advancing and commercializing these initiatives. Although we
cannot claim major discoveries in the realm of ZK, we were the first who proposed the idea of a

https://xchen.page/assets/pdf/CR20-paper.pdf
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https://xchen.page/assets/pdf/LCT+23-paper.pdf
http://kframework.org/


proof checker for math theorems as a ZK circuit, back in 2020. Indeed, see our 2020 K
Approach and Vision presentation (slide 99), where we envisioned a blockchain similar in spirit
to the Proof Chain, but restricted to K. Also, through our cryptography adviser Prof. Andrew
Miller and his PhD student Bolton Bailey, whose research I follow closely as a member in his
thesis committee, we have access to the newest and most advanced ZK research. For
example, they connected us and initiated our collaboration with RiscZero, because Bolton works
as an intern there on a Metamath implementation on their zkVM, jointly with Tim Carstens and
others at RiscZero. We are also carrying out discussions with the teams behind all the other
major ZK languages (zkEVM, zkLLVM, Cairo), to see which one is the most suitable for a first
implementation of our ZK proof checker for Matching Logic. As mentioned, our long term
solution will be to craft our own ZK circuit.

Operational Approach and Hiring: Three Connected Pillars

I founded RV Inc more than 12 years ago, in January 2010. During all this time, we developed
our own approach and methodology for how to operate, how to do things.

The three main activities in our company are Research, Services, and Products. They are
tightly interconnected and rooted in the K framework, as depicted below:

RV was initially formed to bring research done in my lab at UIUC to the real world. Now, RV’s
research competes with any top research lab in the world, both in academia and in industry, with
research papers published in top conferences and journals, with large open source tools and
products, like the K framework. Our RV research team looks into the future, as it was probably
clear in this article. We try to reach far into the future, while making sure that our research
produces results that can be used in our products, eventually. There is a lot of research that we
need to do which cannot be used right away, but we try to minimize that. We try to focus on
those research challenges that can be used or have immediate applications to our products.

How do we pick our research challenges? Actually, we don’t. They pick themselves. Our
Services, for example our security audits, play a key role here. When we offer services to our
clients, we understand their needs and the needs of the tools that we need to offer them as
products, eventually. This way the right research problems to work on take shape. Once
addressed, they then get incorporated into our Products.

https://drive.google.com/file/d/1iXda2NyGzKVWxkd02IlXj5Tq5cOM_gNd/view?usp=share_link
https://drive.google.com/file/d/1iXda2NyGzKVWxkd02IlXj5Tq5cOM_gNd/view?usp=share_link
https://soc1024.ece.illinois.edu/
https://soc1024.ece.illinois.edu/
https://boltonb2.web.engr.illinois.edu/
https://research.runtimeverification.com/


In general, when we hire, we look for people with strong background in formal methods,
formal verification, functional programming, and/or compilers. We know from experience, both
in academia and industry, that these are some of the hardest topics to master in computer
science. Those who become strong in these areas tend to learn more quickly than others
related topics, if interested and motivated. We were never and will never be in a desperate rush
to hire people by any means. Instead, we carefully headhunted our talent and made sure they
were very strong in the areas above, at the same time fitting the culture of the existing team
(being friendly, helpful, and obsessed with solving hard problems). We found that such people
grasped the needed blockchain and web3 technology relatively easily.

We have not attempted to explicitly hire blockchain or Web3 experts so far. Instead, we created
such experts simply by exposing our engineers with their strong background to blockchain and
web3 challenges, such as complex security audits. But, it takes some non-negligible time and
patience. Usually, the new hires shadow experienced auditors initially. This way they not only
learn the domain, but, importantly, they also face the limitations of the tools that we use
internally, or tools that we want to productize eventually. After a few audits, they'll have a pretty
good idea what they would like to add to the basic infrastructure. Then they switch to
developing infrastructure, or products, and while doing so discover … research challenges.
Then they communicate them to the RV research team. Sometimes they want to work on those
research problems as well. In general, our folks have the freedom to move across different
teams and areas we work on.

Our agile approach to work and team formation took us more than a decade to grow. And it
works really well for our company, for the kind of challenges that we face. I'm emphasizing this
because sometimes we talk to investors or other entrepreneurs who think that we should
minimize Services and Research, that we should hide or even eliminate them, and only focus on
Product. We understand the need for recurrent revenue products, we want those as well.
However, we firmly believe that the best way to come up with the best products in this domain is
actually ... to do very solid security audits and learn, from those, what the community needs in
terms of products/tools.

More often than not, what is needed for smooth services is not possible without addressing
some fundamental research problems. A metaphor that I like to bring here is searching for the
cure for cancer: you cannot hope to find the cure for cancer if you only focus on the product; you
need to do a lot of research and experiments and patient engagements in the process; it is easy
to package and sell once it works, but the hard problem is to find the right product. In our case,
the right products cannot be properly identified without expert led services and a lot of research.

This approach served us well so far. We were cash positive from day one. Very few
companies, like ours, can claim that. I am very proud of our approach and of our team.

Engagement Methodology, Continuous Auditing, Product Usage

Before being a professor at UIUC, I was a researcher at NASA. In 2000-2001. One thing I
quickly learned at NASA was that there was so much emphasis on the process and on how to
split the resources of a project so that you increase confidence and assurance in that project.

https://research.runtimeverification.com/


What was unexpected, almost shocking to an immature fresh-out-of-school me back then, was
that only one-fifth, 20%, of the budget of a project was allocated to code development! The rest
of 80% was all allocated to verification and validation (V&V). They even had separate teams for
these tasks. Once I wrote some code, so I was in the 20% budget slice for a while. Then the
code moved into the V&V phase. It was passed to different teams, with different clearance
levels. I was not even allowed to see my own code, once they took it over. A very rigorous
process. But keep this in mind for now: at NASA, 20% development and 80% V&V.

In sharp contrast and to our disappointment, many blockchain project teams who contact us to
audit their code appear to have a different mindset. They think that almost all of their project’s
resources should go into writing the actual code. Once written, launch it asap. Sometimes they
don't even write enough tests, sometimes they even present us with no tests at all. Yet, they
expect from us a “formal verification security audit” to be done quickly (a few days) and cheaply
(less than $10k) right before their launch, as a “stamp of approval” from a reputable auditor. It's
simply ridiculous. Much education is clearly needed in the blockchain space, in order for devs
to truly understand the need for strong methodologies and the proper use of security auditors.
As a side note, we hope that our Proof Chain will wipe out the superficial players, as they will
never be able to produce proof certificates of correctness this way, and users will incrementally
learn that unproven protocols cannot be trusted.

Some of our clients, however, understand the need for correctness. Especially after they have
been our clients, or of other reputable security auditors, previously. They start working with us
early in the process, sometimes before they even write the first lines of code. Thanks to such
mature clients and their high-value projects, we eventually developed what we call continuous
auditing: we start working with the client from the very beginning and help them with everything
until the end of the project, including with designing and writing the code itself; we do not write
the code per se, but we “look over their shoulder” to help them write their code in a way that
makes it easier to audit later on. Our ideal engagement methodology is as shown below:

We start with a design consultation, to understand the protocol business logic. We read their
documentation, written usually in English on a couple of pages, and we look over their code, if
any; we can work even without any code, as the point at this level is not to understand the code
or find bugs in the code, but only to understand what the protocol does. Then we attempt to
formalize it, either using K or on paper, using mathematics. Our more sophisticated clients are



genuinely interested in this step, as they really want to see how their business logic translates
into a rigorous specification. Some confess that they had no idea that this was even possible
without the code. Thus they are pleasantly surprised when they see that we can in fact identify
invariants at that abstract stage and that we can even prove some useful properties.

The next stage of the engagement is to review the actual code. Our clients write their code, we
don't write code for them. We may help with integration with tools like Foundry, though. If the
code is not already written, we like to participate in the brainstorming and design process as if
we were part of their team, to help them write the code in the best possible way ... for security
audits later on. While doing that, we encourage them in the strongest possible way to use tools
like Foundry and to write as many tests as they can bare, to even try to have full coverage of
their smart contract code. Once we get to that stage, we all have a good understanding of the
code and how it relates to the business logic, but the code is still not yet formally verified.

Now we go to the next step, mechanical code verification, where we use formal analysis and
verification tools, like KEVM-Foundry; or even K itself, directly, when the properties cannot be
easily formalized as Foundry parametric property tests. During this stage, we can and usually
do write more properties, and use all our tools in our arsenal of tools in the K framework, to
maximize our confidence in the correctness of that code. Note that only the most naive of the
developers, or their media teams, claim that “their code is correct because it is formally verified”;
everybody else knows that the correctness of the code is only as good as the specifications are,
and that even if the specifications were perfect, errors would still surface if assumptions about
the environment were violated (e.g., what if the EVM implementation, or the consensus protocol
of the blockchain, is buggy?). Finally, the code gets fully verified and we write an audit report,
usually as a PDF file. We hope to change that in the future, to generate proof certificates.

Post-audit, the client launches the protocol and at that point, normally, the job of a security
auditor ends. But with the monitoring & recovery product, now we engage with our clients also
post-deployment of their contracts. We can monitor, for example, the invariants that we verified
statically, pre-deployment. You may wonder why monitor them if we verified them: if we verify
them, then they are correct. Yes, they are correct under certain assumptions, but those may be
violated during operation. Sometimes we monitor the assumptions directly, other times we
monitor the actual invariant. Monitoring the invariant often implies the best recovery when
violated. If the invariant is broken, for example, if a loan is under-collateralized, then typically
we know what to do at that moment, how to fix the problem. Liquidate, in that case.

We developed our client engagement methodology, continuous auditing, and product usage
described above over a period of many years of security audits and tool/product development.
It may look standard in hindsight, but to my knowledge, it is more thorough and systematic than
what we used at NASA. The constraints are also different, as all code is usually open source
and there are no clearance levels in blockchain. However, blockchain is more amenable to
hacker attacks than spacecraft. Needless to say that we prefer clients who understand the
need for our entire stack of services and products. When we have a choice between a client
who wants a quick “stamp of approval” audit, just before launch, versus a client who starts
working with us several months in advance of launching and understands the need for the entire
process, we obviously prefer the second client. As we get more revenue from products like
KaaS and monitoring, we will be more selective with our clients, basically only picking those
who go through the entire continuous auditing process described above. We will encourage the



others to use our tools and products themselves and to publish the proofs generated by these
on the blockchain themselves, once the Proof Chain is available.

K Advantage: Multi-Chain, Multi-Language Audits & Tools/Products

The fact that the K framework is language parametric, or language agnostic, gave us a
competitive advantage in the blockchain space. This capability of K to instantiate its generic
tools with any programming language, which was there before blockchain was even a word,
allowed us to rapidly bring the benefits of formal methods to multiple blockchains, and to do
audits across the following blockchains and their languages:

Languages to the right are those we used in blockchain audits so far. We formalized the
semantics to all of them, both the classic ones like C and the new ones lacking formal
semantics. Being able to do multi-language and multi-blockchain audits should not be taken for
granted! We are probably the only security company that can handle so many different
blockchains and languages, thanks to our core technology, the K framework. I'm very proud of
what we've achieved so far and the fact that we can truly be multi-chain and multi-language.
The reader interested in specifics is encouraged to consult our audits and client engagements
reachable from our Blog and from Github.

Conclusion

The Universal Truth Framework (UTF) will give us the infrastructure that will allow us to know,
with maximum certainty, whether claims are true. Claims can be anything provable, including
everything computable, basically everything that can be derived from a set of assumptions, or
axioms, using well-defined rules: code execution in any programming language or VM, formal
verification or correctness claims, mathematical results in any mathematical theory, medical /
aviation / automotive procedures, results produced or searched by complex AI / machines /
robots, and so on. The UTF will allow and enforce any such claims producers, humans or
machines, to also produce succinct proofs for them, which attest to their claims’ truthfulness.
The truth is the truth, it cannot be changed, and the UTF now gives us a way to certify it.

https://runtimeverification.com/blog
https://github.com/runtimeverification/publications


The claims proved using the UTF need to be stored sometimes, as evidence for certain actions
or as basic blocks to build other claims. There is no better store for claims than a blockchain.
Indeed, any of the existing blockchains with support for smart contracts can be used as Layer 1
for a ZK rollup implementing the UTF. That will provide the Layer 1 blockchain with a Layer 2
that has the usual benefits of ZK rollups (scalability, lower fees) plus the additional benefits that
the UTF brings: it will support all programming languages for smart contracts, it will support
arbitrary claims to be made and proved, including correctness of contracts wrt specifications,
and so on. However, there is massive fragmentation in the blockchain world today, each
blockchain promoting its own programming language or virtual machine, with regular upgrades
and thus the inherent risk that some day things will go wrong. Moreover, blockchain
interoperability is essential, but in our view it is done wrong. Can we do better?

The UTF gives us the opportunity to start fresh and do things right. To implement the ultimate
Layer 0, which we call the Proof Chain. The Proof Chain will be at least as fundamental as
Bitcoin and Ethereum. It will be as simple, stable and secure as Bitcoin because, like Bitcoin,
the Proof Chain has only one job: to achieve consensus. It will be as versatile as Ethereum,
because, like Ethereum, the Proof Chain will allow arbitrary programs to be executed. The
Proof Chain completely separates computation from consensus. Computation is done off-chain,
using arbitrary languages, virtual machines, powerful tools, and fast hardware. Computation,
like any other proved claim, produces a ZK certificate off-chain. The Proof Chain’s validators
check the ZK certificate and then admit the claim. This separation of concerns, computation vs
consensus, will allow users to write contracts in any programming languages, to port existing
smart contracts from other blockchains, and to interoperate like never before. For example,
sending a token from an EVM contract to a WASM contract is a normal transaction. No bridges
needed anymore. Innovation and creativity will proliferate, because there will be no language
barriers. So will education, because mathematical proofs will also go on the Proof Chain.
There is no upper limit on how transformative the Proof Chain will be.

I would like to conclude by saying that the bold vision underlying the UTF and the Proof Chain
would have not been possible without the K Framework. They share the same philosophy, that
languages should not be hardwired in tools, and that tools should generate proofs. The main
part that was missing was the ZK dimension, which now allows us to massively compress proof
objects into succinct certificates. I wrote the first version of K in 2003, as a Perl translator to
Maude. Since then, the amazing K team has contributed more than 500k LOC in several
languages, has made 6 major releases and more than 1000 minor ones, and has improved
performance orders of magnitude. These days, it takes special skill and effort to manually
implement an interpreter better than the one that K generates automatically. For example,
KEVM outperforms most of the EVM interpreters. It took 20 years of hard work to get here. The
current LLVM backend of K represents the 5th major re-implementation of K’s concrete
execution engine and incorporates the state-of-the-art in term rewriting and functional
programming compilation. Yes, things are slow initially when you go for the ultimate, most
general solution. But in my experience, it does pay off to do things right from the beginning.
Performance can always be improved, and it has been. Some of K’s tools still require
performance improvements, but others are blazingly fast.

http://maude.cs.illinois.edu/

	2023-05-07_Whitepaper_Runtime_Verification_Inc_Vision_Cover
	2023-05-07_Whitepaper_Runtime_Verification_Inc_Vision (3)



