
Grigore Rosu
President and CEO at Runtime Verification, Inc.
Professor of Computer Science at the University of Illinois at Urbana-Champaign

https://runtimeverification.com

https://runtimeverification.com/

ÁNSF (Phase I) and NASA (Phase II) SBIR grants
ÁWant to be sure technology is useful before developing it

ÁWhat you can get from it
ÁReduce or avoid car recalls
ǐSafety requirements not violated, dynamically updatable
ǐEven if car is hacked (no distinction between hacked or malfunctioning ECU)

ÁEasier compliance to ISO 26262 for safety
ǐSafety monitors generated automatically (provably correct)

ÁEnhanced communication between OEMs and suppliers
ǐFormal safety specifications will be required and shared

ÁEasier, better, faster testing
ǐSeparation of major concerns: safety versus functionality

Modern automobiles
highly computerized,
including dozens of
Electronic Control
Units (ECUs)
communicating over
the CAN bus

Á Recall is the most important unsolved problem in automotive
Á Recalls are costly ($2B+) and bad for business, and software

related recalls are (increasingly) common

Source: "Automotive Embedded Software Verification and Validation Strategies",
Shankar Akella, EmmeskayAdvanced Technology Solutions

Á More ECUs, more money on electronics, more features, more code

Á ISO 26262 changing the face of automotive: first functional safety
standard, in response to growing software complexity trends

Á Both OEMs and suppliers scrambling for compliance

ÁCurrent state-of-the-art not ideal

ÁFormal safety requirements not available

ǐOEMs blame suppliers, suppliers blame OEMs

ÁECUs developed by suppliers; code not available

ÁPoor CAN bus architecture

ǐAny ECU can send messages to any other ECU

ǐECU sent messages cannot be stopped

ÁRV-ECU: in charge of
monitoring global safety

ÁProvably correct (both
monitoring and recovery code)

ÁECUs locally monitored

ÁTheir critical CAN bus messages
ȰÁÐÐÒÏÖÅÄȱ ÂÙ ÌÏÃÁÌ ÍÏÎÉÔÏÒÓ

ÁLocal monitors communicate
with RV-ECU

ÁLocal monitors achieved by
instrumentation or API

Global
monitor

Local
monitors

ÁAll monitoring code (red) generated automatically
from safety requirements; recovery code verified
ÁCertifiably correct (checkable proofs also generated)

ÁLocal monitors added through instrumentation
(automatically) or provided API, and can
ÁPrevent ECU from sending wrong messages
ÁConsult with RV-ECU to assure global safety
ÁAdd authentication

CAN Bus

ECU ECU RV-ECU
Global

monitorLocal
monitor

Usual
ECU Code

Safe door lock
Doors should always
open only if they were
unlocked in the past and
not locked since then; at
violation, close door.
ȣɉÈÕÎÄÒÅÄÓ ÏÆ ÔÈÅÓÅɊ

Informal requirements

Formalize requirements
(by domain experts,
using various formalisms;
here an interval logic)

"d : always(Open(d) implies
not Lock sinceUnLock)

@violation : Close(d)

Formal requirements

// One such monitor instance

// in RV - ECU for each door d

State: one bit, b

b = UnLock || ! Lock && b

if (Open && !b)

then send(Close)

Monitor for each d

Automatically
generated

Provably
correct

ÁPrototype RV-ECU on an STM ECU
board STM3210C-EVAL

ÁWorking on a real car (model omitted)

ǐcontrolling wipers, windows, doors

ǐsoon engine and brakes

ÁFor the time being, local monitors intended to be
as simple as just requesting acknowledgements
for messages to be sent on the bus from RV-ECU

ÁSo RV-ECU does all monitoring, but local monitors
ensure that safety violating messages are not sent

http://www.st.com/web/catalog/tools/FM116/SC959/SS1532/PF217965?sc=internet/evalboard/product/217965.jsp

