
RV-Match
Product Overview

What We Do

blockchain

dynamic analysis

formal design

formal analysis
framework

Runtime Verification Inc. applies runtime
verification-based techniques to improve the
safety, reliability, and correctness of software
systems for aerospace, automotive, and the
blockchain.

Story

The runtime verification term was coined by Professor Grigore Rosu
(UIUC) and his colleague Dr. Klaus Havelund (NASA) in three papers
they published in 2001 and 2002. The papers received the Most
Influential Paper award at the ACM/IEEE Automated Software
Engineering Conference in 2016, the Test of Time award at the
Runtime Verification Conference in 2018, and respectively the Best
Software Science Paper award at ETAPS 2002.

The company was founded in 2010.

Symbol

During runtime verification we prove that the specification and the
implementation are tightly connected, hence two rigidity points.

Specification Implementation

Rigidity Points

What is runtime verification?

A subfield of program analysis and verification – just
like static analysis – aimed at verifying computing
systems as they execute: with good scalability, rigor, and
no false alarms.

Runtime verification is different from
static analysis because: it executes
programs to analyze, observes execution
traces, builds models from the execution
trace, and analyzes the model.

Runtime Verification complements Static Analysis

RV-Match

RV-Match is a semantics based automatic debugger for
common and subtle C errors, and the most advanced and
precise semantics-based bug finding tool.

RV-Match gives you:
• an automatic debugger for subtle bugs other tools can't

find, with no false positives
• seamless integration with unit tests, build

infrastructure, and continuous integration
• a platform for analyzing programs, boosting standards

compliance and assurance

In a Toyota ITC benchmark evaluation, comparing
RV-Match with various static analysis solutions, our
product received the best score by finding more bugs
than the static analysis tools and achieving a perfect
false positive rate of zero false positives.

Toyota ITC
benchmark

Case study – Toyota ITC benchmark

NASA core Flight Executive (cFE) is a development
and run-time environment for enabling cross-platform
embedded systems.NASA core

Flight
Executive RV-Match detected:

• 15 undefined behaviors
• 1036 implementation-defined behaviors

Case study – NASA cFE

RV-Match can replace GCC or Clang in unit-testing infrastructure to detect
undefined behavior while executing the tests.

Program
under test Tests

RV-Match

Unit testing with RV-Match

Analysis with RV-Match – the kcc tool

undef.c

$ kcc bounds.c
$./a.out
A pointer (or array subscript) outside the bounds of an object:

> in main at undef.c:3:7

Undefined behavior (UB-CEA1):
see C11 section 6.5.6:8 http://rvdoc.org/C11/6.5.6
see C11 section J.2:1 item 46 http://rvdoc.org/C11/J.2
see CERT-C section ARR30-C http://rvdoc.org/CERT-C/ARR30-C
see CERT-C section ARR37-C http://rvdoc.org/CERT-C/ARR37-C
see CERT-C section STR31-C http://rvdoc.org/CERT-C/STR31-C
see MISRA-C section 8.18:1 http://rvdoc.org/MISRA-C/8.18
see MISRA-C section 8.1:3 http://rvdoc.org/MISRA-C/8.1

kcc detects and reports
undefined behavior with ISO
C11 citation.

int main() {
int a;
&a + 2;

}

bounds.c

#include <stdio.h>
#include <string.h>

int main() {
struct { int a; int b; } s = {0, 1};
int * p = &s.a;
printf("%d\n", *(p + 1));

}

$ kcc bounds.c
$./a.out
Dereferencing a pointer past the end of an array:

> in main at bounds.c:9:7

Undefined behavior (UB-CER4):
see C11 section 6.5.6:8 http://rvdoc.org/C11/6.5.6
see C11 section J.2:1 items 47 and 49 http://rvdoc.org/C11/J.2
see CERT-C section ARR30-C http://rvdoc.org/CERT-C/ARR30-C
see CERT-C section ARR37-C http://rvdoc.org/CERT-C/ARR37-C
see CERT-C section STR31-C http://rvdoc.org/CERT-C/STR31-C
see MISRA-C section 8.18:1 http://rvdoc.org/MISRA-C/8.18
see MISRA-C section 8.1:3 http://rvdoc.org/MISRA-C/8.11

Analysis with RV-Match – the kcc tool

overflow.c

Analysis with RV-Match – the kcc tool

#include <limits.h>
#include <stdio.h>
#include <stdlib.h>

void process_something(int size) {
size += 1; // check for overflow
if (size < 0) return;
char *string = malloc(size);
string[0] = 'x';
string[1] = '\000';
puts(string);

}

int main(int argc, char** argv) {
process_something(2);
process_something(INT_MAX);

}

$ kcc overflow.c
$./a.out
x
Signed integer overflow:

> in process_something at overflow.c:6:7
in main at overflow.c:18:7

Undefined behavior (UB-CCV1):
see C11 section 6.5:5 http://rvdoc.org/C11/6.5
see C11 section J.2:1 item 36 http://rvdoc.org/C11/J.2
see CERT-C section INT32-C http://rvdoc.org/CERT-C/INT32-C
see MISRA-C section 8.1:3 http://rvdoc.org/MISRA-C/8.1

Analysis with RV-Match – the kcc tool

Error Message ISO C11 Reference
UB-CB1 Types of function call arguments aren't compatible with declared types after promotions. 6.5.2.2:6, J.2:1 #39
UB-CB2 Function call has fewer arguments than parameters in function definition. 6.5.2.2:6, J.2:1 #38
UB-CB3 Function call has more arguments than parameters in function definition. 6.5.2.2:6, J.2:1 #38
UB-CB4 Function defined with no parameters called with arguments. 6.5.2.2:6, J.2:1 #38
UB-CCV1 Signed integer overflow. 6.5:5, J.2:1 #36
UB-CCV3 Conversion to integer from float outside the range that can be represented. 6.3.1.4:1, J.2:1 #17
UB-CCV4 Floating-point value outside the range of values that can be represented after conversion. 6.3.1.5:1, J.2:1 #18
UB-CCV5 Casting empty value to type other than void. 6.3.2.2:1, J.2:1 #23
UB-CCV6 Casting void type to non-void type. 6.3.2.2:1, J.2:1 #23
UB-CCV7 Conversion from pointer to integer of a value possibly unrepresentable in the integer type. 6.3.2.3:6, J.2:1 #24
UB-CCV11 Conversion to a pointer type with a stricter alignment requirement (possibly undefined). 6.3.2.3:7, J.2:1 #25
UB-CCV12 Floating-point overflow. 6.5:5, J.2:1 #36
UB-CEA1 A pointer (or array subscript) outside the bounds of an object. 6.5.6:8, J.2:1 #46
UB-CEA2 Pointer difference outside the range that can be represented by object of type ptrdiff_t. 6.5.6:9, J.2:1 #50
UB-CEA5 Computing pointer difference between two different objects. 6.5.6:9, J.2:1 #48
UB-CEB2 The right operand in a bitwise shift is negative. 6.5.7:3, J.2:1 #51
UB-CEB3 The right operand in a bitwise shift is greater than or equal to the bit width of the left operand. 6.5.7:3, J.2:1 #51
UB-CEB4 The left operand in a bitwise left-shift is negative. 6.5.7:4, J.2:1 #52
UB-CEB6 The right operand in a bitwise shift is negative. 6.5.7:3, J.2:1 #51
UB-CEB7 The right operand in a bitwise shift is greater than or equal to the bit width of the left operand. 6.5.7:3, J.2:1 #51more than 200

reported issues

True semantics-based analysis

At the heart of RV-Match is a
complete formal semantics of
the ISO C standard powered by
the K framework.

Program executable

KCC

C source
(.c, .h)

Translation
interpreter Execution

interpreter

Preprocessor,
parser

Natively-
compiled
program

K abstract
syntax

Native
build system

K K

Target platform

Translation
semantics

Execution
semantics

True semantics-based analysis

Partners & Customers

Executive Team

Patrick
MacKay
Chief Operating Officer

Grigore
Rosu
President and CEO

Ralph
Johnson
Program Management
Officer

Darko
Marinov
Chief Quality Officer

Our company is fueled by people. We are pioneers in the runtime verification
community, with hundreds of publications that shaped the field.

Main Offices

University of Illinois at Urbana-Champaign
Ranked #2 worldwide in Formal Methods

University of Bucharest
Ranked #1 University in Romania

http://csrankings.org/#/index?soft&log&world
https://www.topuniversities.com/where-to-study/europe/romania/guide

